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Abstract 

Today’s stability criteria are not capable for providing a precise definition and 

precaution suited for a mobile robot: traversing on unpredictable surface, exerting 

manipulation forces and torques, susceptible for variable ground normal forces, or 

subjecting to attitude orientations. Thus, this research firstly examined the dynamic effects of 

mobile robot traversing on different surface geometries with variable configurations and 

attitudes, and it secondly investigated their impact on the normal forces distribution. Finally, 

it reflected the influences of these factors on the dynamic stability of the rover in order to 

protect the rover from tumbling. This study presents a new dynamic stability criterion done 

on a new mechanical structure; quadruped mobile robot equipped with wheels and legs 

called rover. 

 

The primary contribution of this thesis is exploiting the Denavit-Hartenburg 

approach for assigning the coordinate frames at link’s end-terminals, and then relating 

between each two adjacent frames by forming homogeneous transformation matrix. 

Forward kinematics is exploited to relate the end-effectors (four wheels) with base frame 

(platform). The platform attitudes (Roll, Pitch, and Yaw) are evaluated in relative to 

proposed universal frame at the center of platform. The coordination between locomotion 

(wheels’ motion) and manipulation (joints’ motion) is clearly defined.  

 

In this work, the dynamic equations of motion are driven by using Newton-Euler 

Recursive Relations. The kinematics of links (velocities and accelerations) are propagated in 

forward recursion starting from base frame and ending at the four end-effectors, link by link. 

As well as, the dynamics of links (generalized forces and moments) are propagated in 

backward recursion starting from four end-effectors frame and ending at base frame, link by 

link. The force and moment propagated into a base link (platform) are determined as a 
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function of gravity forces, inertial forces, inertial toques exerted on the center of mass of 

links, and ground normal forces exerted on the end-effectors.  

 

The equations of equilibrium for four legs are considered indeterminate system, thus 

in this thesis the normal forces are evaluated for three contact legs in the case the non-

symmetric rover. However, in the case of symmetric configurations the normal forces are 

distributed equally between the sides which sharing the same the inertial forces, ground 

geometries, and platform attitude. Thus regarding to symmetric four legs are evaluated by 

considering two legs sharing the same value. 

 

A new dynamic stability criterion is presented for rover in this thesis, and it is 

operating on various shapes of surfaces, and variable rover configurations. In addition, this 

criterion provides on-line calculations for the effect of variable rover configurations, various 

surface geometry, platform attitudes, kinematic values, dynamic effects, and variable ground 

normal forces. The on-line calculations are referred relatively to the universal frame. 

 

The simulation model is also presented for various examples using MatLab in order 

to provide on-line calculations for predicting the behavior of a physical system under a 

variety of surface geometries and rover configurations. 

 

Keywords: mobile robots, center of mass, static and dynamic stability margin, forward and 

inverse kinematics, forward and backward dynamics, wheeled-legged manipulator, uneven 

terrain, inertial forces and moments, inertial acceleration, normal and frictional forces, 

Newton-Euler Recursive Relations. 
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  ملخص

 
ما تم إيجاده سابقاً من معايير للثبات الستايتيكي والديناميكي لا يزود بدلائل آافية بخصوص 

 وخصوصاً في حالات السطوح ،من خطر الإنقلاب) mobile robots(وقاية العربات المتحرآة 

لتلك  المتباينة في قوى رد الفعل المتغيرة على الأرجل الملامسة ،مستويةالالغير منتظمة وغير 

 من تغيير وضعية هتتعرض العربة في تلك الحالات لتأثير القوى الديناميكية وما يتبع. السطوح

 وتم ،يقدم هذا البحث مجسم ميكانيكي جديد لعربة ذو أربع أرجل مزودة بالعجلات. دوران العربة

  بطرق محوسبة وإيجاد قوى رد الفعلdynamics and kinematicsتصميمها ودراسة تأثيرات 

  .المجهولة وتاثيرات هذه العوامل مشترآة على الإتزان الديناميكي

  

 لتعيين المحاور الثلاثية لأجزاء  )Denavit and Hartenberg(هذا البحث يستخدم 

 لإيجاد العلاقة بين (homogeneous transformation)العربة الداخلية وإستخدام مصفوفة 

 (end-effectors) والعجلات (platform) ما بين القاعدة أما العلاقة المرتبطة. المحاور المتجاورة

 حول  زوايا دوران القاعدة المجهولةقيميجاد ، آذلك تم إ(forward kinematic)فلقد قمنا بإستخدام 

  . محور ثابت

  

ير ال ث قد تم توظيفها لإيجاد تأ Newton-Euler Recursive Relationsطريقة

Kinematics القوى  ديناميكية ومن ثم تم إيجاد تأثير، حتى العجلات الأربع إبتداءاً من القاعدة 

  .والعزم على آل جزء من أجزاء العربة بداية من العجلات حتى القاعدة
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قدم هذا البحث معيار جديد للإتزان الديناميكي للعربة استنادًا على قيمة العزم على سطح 

  .ن بعيدة عن القيمة الحرجةالقاعدة المعبر عنها نسبة للمحور الثابت على أن تكو

  

 للتطبيق على عدة أمثلة تحتوي على عدة متغيرات في Matlabولقد تم إستخدام برنامج ال 

، وآذلك ضمن تأثير شكل تضاريس سطح المريخ والتغيرات الحاصلة على حرآة أجزاء العربة

  .ديناميكية متغيرة
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NOTATIONS 

 

Abbreviations  

DH Denavit-Hartenburg 

RCF right conjunctional frame 

LCF left conjunctional frame 

RDF right disjunctional frame 

LDF left disjunctional frame 

RFS right front shoulder 

RRS right rear shoulder 

LFS left front shoulder 

LRS left right shoulder 

K front or rear chosen under a certain conditions 

RKIS right front/rear input system 

LKIS left front/rear input system 

GCP ground contact point 

 

Coordinate frames 

O frame 

OU universal frame 

O0 base frame 

O0R right base frame 

O0L left base frame 
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O1R right conjunctional frame 

O1L left conjunctional frame 

O2R right disjunctional frame 

O2L left disjunctional frame 

O3RF locomotive wheel frame of right front leg 

O3RR locomotive wheel frame of right rear leg  

O3LF locomotive wheel frame of left front leg 

O3LR locomotive wheel frame of left rear leg  

O4RF end-effector frame of right front leg 

O4RR end-effector frame of right rear leg 

O4LF end-effector frame of left front leg 

O4LR end-effector frame of left rear leg 

OWRF wheel universal frame of right front leg 

OWRR wheel universal frame of right rear leg 

OWLF wheel universal frame of left front leg 

OWLR wheel universal frame of left rear leg 

OSRF surface frame of right front leg 

OSRR surface frame of right rear leg 

OSLF surface frame of left front leg 

OSLR surface frame of left rear leg 

OG ground universal frame 
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Drawings 

 axis is pointing in the paper 

⊗  axis is pointing out the paper 

•  indicates that the wheel is in contact with ground. 

o  indicates that the wheel is not in contact with ground. 

•a   means that the leg is in contact with ground. 

a o   means that the leg is not in contact with ground. 

 

Variables and constant 

A homogeneous transformation 

B generalized homogeneous transformation matrix 

q generalized coordinate 

θ  variable joint 

α  twist angle 

n normal vector 

o orientation vector 

a approach vector 

p position vector 
1i

ir
−  position vector from frame i to frame i-1 

di link offset of link i. 

ai link length of link i. 

mi mass of link i. 

m total mass of the rover 
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TERMINOLOGIES 

Manipulator robot: is a set of links connected with joints that executes a set 

of manipulations via joints and links, while the base link is fixed by stationary 

pillar.  

Manipulation: is the movement of robot’s components with respect a fixed 

base frame. 

Mobile robot: executes a set of manipulations and locomotions during the 

travel, while the base link moves.  

Locomotion: is the movement of the base frame with respect the universal 

frame as resulted of the movement of the locomotive device. This process 

requires scientific and accurate coordination between base link, robot’s 

components, and the geometry of the ground. 

Base link: is considered the first device of the four legged manipulators, it is 

not bolted with stationary pillar as Stanford, Screw, Puma, etc. Therefore, it is 

influenced by the configurations of the four legs, the geometry of the ground, 

as well as the generalized forces acting on the end-effectors. 

End-effector link: is the last link that interacts on the surrounding 

environment.  Its functionality integrates the manipulation and the locomotion 

using finger, arm, leg or wheel. In this thesis, there are four end-effectors, i.e. 

four wheels.  

Kinematics: is concerned with study of motion of robot (i.e. displacements, 

velocities, and accelerations of links) regardless the forces that cause these 

motions. 
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Forward kinematics: is the study of position and orientation of the end-

effector as a function of the joint angles, in forward manner starting from base 

to end-effector. 

Inverse kinematics: is a study of the joint angles as a function of position and 

orientation of the end-effector. 

Dynamics: is concern with study of forces and moments (i.e. normal forces, 

gravity forces, and inertial forces and moments) that cause the motion without 

regard to the displacements, velocities, and accelerations. 

Forward dynamics: is the derivation of kinematics from forces and moments 

starting from platform and ending at wheel, link by link. 

Inverse dynamics: is the derivation of forces and moments from the 

kinematics starting from wheel and ending at platform, link by link. 

Stability criterion: is a concept or a technique made to prevent the robot from 

turning over.   

Static stability: is a study concerns in mobile robot moving with zero or 

constant velocity (acceleration = zero) in the absence of inertial forces, under 

the effect of ground geometries, normal forces exerted on end-effectors, and 

gravity forces exerted on center of masses of links. It discusses the support 

polygon where the line of gravity will fall inside. Thus, the mechanical system is 

more stable and comfortable with using more legs. 

Dynamic stability: is the study that concerns in mobile robot moving with 

regularly linear velocity (constant acceleration). The additional effects added to 

static case are the influences of frictional forces, and inertial forces and torques 
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acting on center of masses of links. This study requires arduous control and 

numerical computations in order to achieve on-line calculations. 

Center of mass: is a single point around which the total mass of the rover is 

balanced in all direction. 

Support polygon: is the polygon area delimited by the projections of 

supported legs onto horizontal plane. 

Ground contact points: are the numbers of landing legs on the surface.  

Generalized coordinates: are used to describe the geometric configurations 

or the degrees of freedom for mechanical system. 

Generalized forces: are the forces and moments acting by actuator on joints 

in the direction of the generalized coordinates. 
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Chapter One 

 

1. Introduction  

Mobile robots play a major role in development of our real life in 

different areas. In the wake of the growing speed of technologies and 

explorations, the human beings face challenges to accomplish specific missions 

in dangerous environments safely in meaningful and purposeful manner. For 

example, the explorations taken place inside volcanoes [1], nuclear reactors [2], 

mining fields [3], construction and forestry industries [4], or planetary missions 

[5, 6].  Those missions confront arduous processes and endanger the workers’ 

life to reach over a forbidden location entries. In fact, those explorations are 

highly in need of replacement of direct human intervention with accessible 

mobile machines, which achieve incorporation between the manipulation and 

locomotion automatically. Therefore, countless efforts [7, 8, 9, 10, 11] have 

been focused on autonomous mobile robots in order to avoid the human 

operators from the dangerous environment. 
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Since 1960 [12], there have been a growing international interests in the 

Mars exploration where the absence of life assurance. The scientists [13, 14] 

have interested in Martian surface geology, topology, mineralogy, morphology, 

geochemistry, and atmospheric environment. Indeed, they have drawn the 

world’s attention for three main necessities throughout exploring those Martian 

properties and characteristics: in order to make sure of the probability of last-

present life existence, understand the climate history, and search for what 

resources can be benefited from over there. However, the indirect contact of 

scientists with Mars from earth throughout telecommunication systems yields 

uncompleted results. This reason has enforced the scientists’ needs directing 

toward mobile robot capable for gaining sufficient amount of samples of sands 

and rocks and subjecting these samples under tests and experiments on the 

earth. Therefore, the planetary scientists have opened their eyes on the use of 

small mobile robots since 1996 [15, 16], which are capable for traversing 

random Martian terrain stably and smoothly for longer traverses and time. This 

mission requires studies for: firstly, an efficient mechanical structure. Secondly, 

effective dynamic stability criterion. Thirdly, mathematical analysis and 

simulation for kinematics and dynamics in computational manner. Fourthly, 

surface geometry and its dynamic disturbances. 
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1.1. Mechanical structures for mobile robots 

The first micro-rover, named Sojourner [14], was launched aboard the 

Mars Pathfinder spacecraft in 1996 and landed on Mars in July 4, 1997 [17], see 

Figure 1.1. However, the Sojourner was designed for a very limited mission 

distance and time; it traversed 100 meters as a total distance during its elapsed 

time “83 sol” over there, while the average speed was 2.7 meters per traverse 

day [17, 18]. 

 
a. Lander and rover. 

 

 
b. Sojourner rover roamed on the Martian surface. 

 
Figure  1.1. Mars Pathfinder mission settled on Ares Vallis on July 4, 1997 [17]. 
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In 2003, NASA's Mars Exploration Rover mission sent  two identical 

six-wheeled mobile robots; the first was named Spirit and the second was 

named Opportunity. The Spirit and Opportunity landed on opposite sides on 

the surface of Mars and completed the mission in January 2004 [16]. They both 

can move on terrain with five centimeters per second as top speed, and can 

traverse 40 meters in Martian daytime, and the mission life was no more than 

90 days and 1000 meter as total distance [19]. Robotic arm was attached on 

platform for testing Martian rocks and soil as shown Figure 1.2. 

 
Figure  1.2. Spirit and opportunity robot [19]. 

 
However, the previous traditional rovers have maintained stable in short 

traverses and time, with slow and constant velocity, and in relatively benign 

terrain [20] due to their inheritance of same mechanical characteristics, ignoring 

rover kinematics and dynamics, neglecting the idea of existing of inertial effects 

and unpredictable environments, imposing quasi-static motion, and disability to 
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define precise static and dynamic stability criterion capable for functioning in 

all rover mechanical structures and surface geometries. In future Mars 

exploration missions, there will highly be interests for autonomous mobile 

robots that will broaden the range of exploration for long distance and time in 

challenging terrain and obstacles more than encountered by previous rovers 

[14, 21, 22].  

 

Therefore, this work evades the idea of adopting any one of the past 

mechanical characteristics, and it started from scratch in creating a new 

mechanical model composed of four manipulator wheeled-legs sharing the 

same platform as moving base link. The presented rover should maintain 

statically and dynamically stable during the locomotion to accomplish Mars 

mission. This is also the main issue in which this work treated and focused in 

computational manner.  

 

This work exhibits a new mechanical design for a quadruped mobile 

robot. The four identical wheeled legs are gaining high level coordination 

between manipulation and locomotion in various aspects, because the four legs 

share symmetric mechanism and coordinate frames. The design here executes a 
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set of manipulations and locomotions integrated at the same time in 

algorithmatic control for providing the dynamic stability. This feature 

contributes in increasing the rover speed stably and smoothly on uneven 

terrain. 

1.1.1. Manipulation system 

The rover is simply composed of common platform connected with four 

wheeled-legged manipulators by differential joint. Notations are distributed on 

right side, left side, front side, and rear side. Each wheeled-legged manipulator 

connected with common platform will be represented as right front leg, right 

rear leg, left front leg, and left rear leg, as shown in Figure 1.3. Each leg is 

considered as a combination of five links and four joints, starting from 

platform base link 0, and ended with end-effector link 4. The right side and left 

side share the differential joint, joint 1, mounted above the mobile platform. At 

the edge of platform in each side, each two legs share the joint 2 and it is 

named conjunctional joint. Joint 3 divides those for two independent legs, i.e. 

front shoulder and rear shoulder. Finally, Joint 4 connects the locomotive 

wheel. The revolute joints are utilized here for controlling the mobility and 

posture of the rover. Furthermore, the joints enable the end-effectors to select 
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the footholds on ground, control the distributions of ground normal forces, 

and delimit the area of support polygon.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure  1.3. Rover components composed of four wheeled-legged manipulators. 

 
 

The first joint, differential joint, rotates around the lateral axis of the 

universal axis. The second joint, conjunctional joint, rotates around the 

longitudinal axis of the platform edge. The third joint, disjunctional joint, 

rotates around the lateral axis of the platform edge. Finally, a wheel is 

connected by the fourth joint to provide protection from tipping onto its side 

and to propel the entire rover on ground. 
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Each wheel is equipped with DC motor for the actuating motion. The 

rover has no breaking system, but the motors provide the feature of self-

locking system; so that if the motors of the four wheels are locked, the rover 

will stop. 

 

The number of degrees of freedom of each leg depends on the number 

of joints in the rover. Usually in robotics science, each joint provides one 

degree of freedom either for revolute or prismatic motion, unlike human joints. 

Moreover, the platform will be susceptible to a sequence of changes in 

configurations during the motion, while this mobility of platform will provide 

the system with three degrees of freedom, i.e. three (φ ,θ ,ψ ) related to 

orientation of the platform represented in roll, pitch, and yaw.  

 

The rover overall weighs was chosen to be 12kg, which is distributed 

such that the platform weighs approximately 4kg, m1= 1kg, m2= 0 (by 

approximation), m3= 1kg, and m4 (wheel) weighs= 0.5kg. The length and the 

width of the platform respectively are 60cm and 40cm. The length of the each 

shoulder (link 3) is 40cm. The inner and outer radii of each wheel are 3 cm and 

5cm, respectively.  
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1.1.2. Locomotion system 

The locomotion of mobile robot is defined as the movement of the 

whole robot on the ground by employing either wheels or/and legs. Most 

mobile robots use the wheels, which are easier to control and manoeuvre, 

maintain stable, consume less energy, and move faster than legs on an even 

terrain. However, the wheels cannot operate on uneven terrain efficiently, 

because the wheels diameters have to be larger than the obstacles to overcome 

and the rolling contact of such rovers on uneven terrain are susceptible to 

complex wheeled-ground interactions [23] with the physical soil properties: 

rocks distribution, friction characteristics and soft terrain. In addition, the 

heavy-wheels or their payload may plow the soft terrain causing friction forces 

and terrain damage thwarting the whole mission. Look at the practical 

prototypes as in SOLERO [24], and CEDRA [25]. 

 

In contrast, the legs are capable to select footholds above discontinuous 

ground, in which benefits the locomotion to traverse on an uneven terrain, that 

comprises the capability of avoiding the obstacles and holes, walking up and 

down the steps, overcoming the soft ground sinking and causing less terrain 

damages, and controlling the distribution of forces. In addition, the positive 
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advantage of legs can add that they are omnidirectional, as it can provide for 

directional movements forward, backward, sideways, or turn on the spot as 

shown through the quadruped robot WARP1 [26]. However, legged mobiles 

have many degrees of freedom that make it difficult to design and control. 

Moreover, they are relatively slow speed and energy inefficient. In addition, at 

least six legs are required for static walking, while three wheels are required for 

static rolling. The practical examples on this type are Quadruped Aibo ERS-210 

robot [27], WARP1 [26], TITAN VIII [28] or SILO6 [3]. 

 

Therefore, the mobile robot will be much more productive if it is 

equipped with legs and wheels to over come the most challenges mentioned 

previously. These wheeled-legged properties mentioned above were implied 

from practical experiences taken place in several mobile robots; for example in 

the case of Sojourner, Spirit, Opportunity, or Rocky 7 [29]. 

 

This thesis inherits the advantages and eliminates the drawbacks of both 

legged and wheeled locomotion in computational manner, for being equipped 

with four wheeled-legged manipulators. Thus, the platform a base link will 

smoothly rotate in relative to configurations of four wheeled-legged 
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manipulators and surface geometries. In addition, the presented rover will 

overcome obstacles, traverse uneven terrain at higher velocity in stable form 

and with less power consumption. Furthermore, it will provide a reliable 

passive mechanism for supporting the weight of the rover at inclined surface. 

In addition, it can locomot forward, backward, and sideways. 

 

This rover executes a set of manipulations and locomotions during the 

travel. The supported legs of rover will be susceptible for discrete changes 

when the legs are lifted or placed on variable surface geometries. This yield a 

change on rover attitude with respect to universal frame, because the body’s 

attitude is influenced by configurations of joints and surface geometries 

subjected on the supported wheeled. These kinds of control, irrespective of 

manipulation or locomotion, are required a computational stability measured 

criterion that maintains the rover stable with different terrain types. However, 

till now there is no precise static and dynamic criterion that can be common for 

all different mechnical structures and surface geometries. The loss of stability 

may lead to tipping over and then the mission will fail completely. 
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1.2. Stability criterion 

Generally, stability is defined as the tendency of a robot to return to its 

original equilibrium state after being influenced by a disturbance. This work 

studies the stability of rover on the surface of Mars throughout overcoming any 

perturbation that could enforce the rover to turn over. Many scientific authors 

have dealt with specific definition which states that the turnover occurs when 

the center of mass of rover undergoes a rotation about one of its edges of 

support polygon. This rotation yields a reduction in the number of ground 

contact points and a decrease in the boundary of the support polygon. The 

remaining contact points will finally lie on a single line as axis of rotation. 

Moreover, the moment acting around this single edge of support polygon could 

enforce the rover to tumble making the system statically unstable. These 

sentences have been formulated mathematically in order to relate the 

geometrical shape of the ground directly with the manipulation and locomotion 

of the rover. 

 

There are two general classifications for rover stability; namely static 

stability and dynamic stability. In 1968, McGhee and Frank were the first who 

put forward the static stability criterion for an ideal machine moving at slow 
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and constant speed on even terrain. In 1976, Orin et. al were the first who 

proposed dynamic stability criterion on the presence of inertial forces. Later, 

several researchers have either extended the previous criteria or proposed new 

stability criteria for both static and dynamic. Unfortunately, different 

applications may require different stability margin criteria. Even if the stability 

criterion is better evaluated, the mechanism of rover will be optimized in order 

to cope with different terrain situations [30]. Thus, the criteria founded before 

were insufficient to remain the most rovers upright or stable [31]. In any way, it 

should be necessary to pay attention for the definitions for both static and 

dynamic systems, and the previous criteria done in previous works.  

1.2.1. Static stability margin 

The static stability was traditionally determined by the support polygon 

and the projection of the center of mass. These two parameters can formulate a 

simple definition for static stability: “occurs when center of mass is above the 

support polygon regardless of the effect of inertial and normal forces”. 

However, this requires computational control for the legged configuration, 

ground elevations, ground contact points, and the body attitude. The legged 

configuration [26] studies the sequence and time in which the legs are lifted and 

placed in ground and in which joint angles are manipulated. The ground 
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contact points, which delimit the support polygon, are chosen by the landing 

legs on ground. The ground elevation is the input system at each supported 

wheel. 

 

Conditionally, the minimum requirements demanded for static stability 

are three legs on contact with the ground, forming the support polygon at all 

the times. The static stability requirements must enable the vertical projection 

of the center of mass to be inside the boundary of the support polygon. 

Otherwise, there will be moment acting around an edge of support pattern that 

could enforce the rover to tumble, making the system statically unstable.  

 

Tricycle has three contact points on the ground, and the boundary of 

support polygon is delimited in a triangle area connecting the three contact 

points. If the vertical projection of center of mass is fallen inside the boundary 

of the support polygon, then the tricycle is characterized statically stable for 

keeping itself upright. In contrast, Bicycle has two contact points on the 

ground, and the boundary of support polygon is restricted in a single line 

connecting the two contact points, and the center of mass is either above or 
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outside the line. Thus, the bicycle is always characterized statically unstable and 

cannot keep itself upright at rest or constant speed.  

 

The requirements for static stability mentioned above have been 

formulated since 1968 in different theorems and for variant mechanisms by 

several researchers. They have provided an indication for the probability of 

better static stability by keeping the vertical projection of the center of mass at 

the middle of support polygon. So that, they have designed the mobile robots 

with big boundary of support polygon and low height of the center of mass. 

1.2.2. Previous work on static stability 

McGhee and Frank [32] were the first who introduced the idea of Static 

Stability Margin criterion, based on an ideal insect locomotion system. They 

defined it as the shortest horizontal distance from the vertical projection of the 

center of gravity to the nearest border of the support pattern formed by the 

contact points of legs with ground, called horizontal support polygon. If the 

ideal machine is statically stable, the margin will be positive. Otherwise, it will 

be negative. As shown in Figure 1.4, the black circle indicates for supported 
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leg and white circle indicates for not contacted legs with the ground. The 

static stability margin of a. is positive, and of b. negative. 

 

 
 
 
 
 
 

Figure  1.4.Top view shows the support polygon and pattern onto horizontal plane. 

 

However, McGhee et al dealt with a rigid body with mass-less legs 

moving in a straight line, on an even terrain, and in steady-state constant speed 

locomotion. In addition, this criterion is geometric and independent of the 

height of center of mass. Moreover, it does not encompass kinematic 

configurations, dynamic effects or normal forces [30]. 

 
Messuri and Klein [33] proposed Energy Stability Margin for rough 

terrain, which evaluates the minimum potential energy or work needed for 

turning the center of mass of the mobile robot around the edge of the support 

polygon. In other words, during the rotation of the center of mass on a circular 

path around the edge, this criterion measures the vertical distance between the 

maximum height of center of mass at a critical point above the edge and the 
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current height of center of mass multiplying with the weight of the mobile 

robot as shown in Figure 1.5. 

 

 
 
 
 
 
 
 
 

Figure  1.5. Energy Stability Margin 
 

Nagy et al [34] extended the Energy Stability criterion to Compliant 

Energy Stability Margin to overcome the foot sinkage on compliant terrain. 

However, the stability margin, which takes into energy consideration, is an 

inaccurate measure because it changes with respect to the weight of mobile 

robot at the same posture, i.e. it maximizes the probability of stability for the 

heavier robot at same posture. Hirose, et al [35][36] eliminated the effect of the 

weight making the margin in dimensional-length expression by normalizing the 

Energy Stability Margin to the weight of mobile robot.  

 

However, the static stability does not deal with conditions when the rover 

is subjected to the inertial forces and moments and ground normal forces [31]. 
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Thus, the static stability can prove its functionality in the case of mass-less legs 

with imposing limitations on rover’s motion by keeping it moves at slow and 

constant speed to resist the inertial effect [37]. When the moving mobile robot 

possesses considerable mass legs, the stability must be defined in the dynamic 

approach. The current efforts of researchers have concentrated on the 

confrontation of these dynamic effects that can restrict the stability of mobile 

robots and mission performance during the motion on the base of dynamic 

stability principle.   

1.2.3. Dynamic stability margin 

The mobile robot must meet the conditions for dynamic stability 

throughout accelerated motion with taking into consideration the high effects 

of the inertial forces and moments, dynamics disturbances from irregular 

terrain, and variable normal and frictional forces. The dynamically stable rover 

is considered faster than in the case of statically stable form. Support polygon, 

legged configurations, center of mass projection, inertial forces and moments, 

accelerated motion, frictional forces, and normal forces were traditionally 

considered the main parameters for dynamic stability. As noted previously, the 

dynamic stability provides more comprehensive definition as if the static study 

is a part of dynamics. However, the rover may be dynamically stable without 
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being statically stable or vice versa, i.e. the moving bicycle is dynamically stable, 

since it easy to remain upright and hard to flip during accelerated motion; and it 

is statically unstable in the roll direction, since it cannot remain upright at rest 

or slow motions.   

1.2.4. Previous work on dynamic stability 

Orin et al [38] provided the first dynamic stability margin called Center 

of Pressure for a six-legged robot vehicle as an extension for center of mass 

projection idea. This criterion states that a mobile robot is dynamically stable if 

the projection of the center of mass along the direction of the resultant force 

remains inside the boundaries of the support polygon. 

  

Vukobratovic and his colleagues [39] proposed Zero Moment Point 

criterion, which is helpful for biped locomotion only on an even and flat 

terrain. In any way, this criterion claims the dynamically stability for the rover if 

the ZMP remains inside the boundary of the support polygon. Zero Moment 

Mass relies on the concept that states the sum of all forces and the sum of all 

moments of the rover body on the support polygon are equal to zero. 
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Kang and his colleagues [40] proposed Effective Mass Center based on 

Zero Moment Mass for a quadruped-walking robot subjected to external 

forces. They have claimed that the effect of external forces on the real center of 

mass yields deviation of ZMP from the real center of mass called effective mass 

center. For finding the walking robot stability, this deviated point can be 

considered as the real center of mass as if there are no external forces. Thus, 

the dynamic stability of the quadruped robot can be conventionally found if 

this point is located inside the support polygon. They attached force sensors to 

each leg’s tip of the quadruped-walking robot in order to find the reaction 

forces then directly in mathematical equation they substituted these values to 

evaluate this deviation. However, this criterion is invalid in uneven terrain [31, 

23]. 

 

Lin and Song [41] proposed Dynamic Stability Margin, which is defined 

as the smallest of resultant moments around edges of axes of rotation, due to 

normal forces, gravitational forces, and inertial forces and moment acting on 

center of mass, normalized by the total weight of the system. The positive 

moment explicitly counteracts the occurrence of instability otherwise the rover 
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will turn over. However as a result of normalizing the moment by weight; this 

criterion implicitly conducts the unit of length that should remain positive.  

 

Yoneda and Hirose [42, 23] proposed Tumble Stability Criterion for 

mass-less legs. This criterion investigates for the mobile robot’s stability when 

all legs become without contact with the ground except two legs forming two 

ground contact points as a line segment, and the mobile robot will start to 

tumble by rotating around the single line segment. They claimed that there 

must be a supporting force for any non-contact point capable for overcoming 

the tumbling. Furthermore, it evaluates the absolute value of the moment 

around the rotation axis divided by its weight, which generates around the line 

segment to withstand the tumbling. This stability criterion is evaluated not only 

on ground surface, but also on wall and ceiling surfaces in which these surfaces 

will provide the support forces for legs of the mobile robot. However, it does 

not take into the consideration of dynamic effects of legged motions when the 

legs are considerable masses. 

 

Zhou [43] proposed Leg-End Supporting Moment, which is defined 

similar as previous criteria as the leg-end supporting moment divided by the 
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weight of the mobile robot. If the moment is greater than zero, the mobile 

robot will remain in stable state. They used the internal robot sensors for 

finding forces and distances online to have precise measurements. 

 

Papadopoulos and Rey [44, 45] proposed Force-Angle stability measure, 

which evaluates minimum angle between the net force vector acting on the 

center of mass and each of the tipover axis normals. The mobile robot is in 

critical stability when this angle approaches to zero. The zero angle takes place 

at the time the net force becomes coplanar with any tipover axis normals, or 

when the net force becomes zero. This criterion shows that the mobile robot’s 

instability takes place if the net force vector directs outside any one of tipover 

axis normals. Therefore, this criterion takes geometric measure into 

consideration, and it is sensitive to the effect of center of mass height, whereas 

the raising of the center of mass height will minimize the probability of keeping 

the mobile robot in stable situation. Furthermore, they claimed that it operates 

on uneven terrain because the support pattern, formed by ground contact 

points, is not restricted in a horizontal plane. However, Garcia [46, 47] proved 

throughout experiments that this criterion has poor accuracy when 

manipulation effects arise during walking over an uneven terrain.  
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Ghasempoor and Sepheri [48] proposed Dynamic Energy Stability 

Margin. They take into consideration the dynamic effects to the Energy 

Stability Margin including the inertial and normal forces that encountered 

during the motion of the mobile robot on rugged terrain. 

 

Garcia and Gonzalez [47] improved the Energy stability Margin to 

Normalized Dynamic Energy Stability Margin for walking machines. This 

criterion is defined as the smallest of the stability levels required to tumble the 

robot around the support polygon, normalized to the robot weight. 

Furthermore, it shows that the walking machines can remain dynamically stable 

during motions under dynamic effects if each momentum around its edge of 

support polygon, generated from robot-ground forces and moments, is positive 

or in the clockwise direction. It is considered the optimal accuracy from the 

energy point of view.  

 

However, the stability conditions mentioned above are not adequate to 

guarantee the safty for whole mobile robots from turnover. If optimum 

criterion is defined, the robot manipulation and locomotion can also be 

optimized. Beside, random surface types can be faced and it should be aware of 
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variable normal forces that can suddenly appear and effect on the rover 

stability, because dynamic disturbances at the wheels generate large moment 

about the platform link expressed in universal frame, tending to rotate the 

mobile robot and losing its stability. The net moment that is capable for 

rotating the rover, which is resulted from the normal forces acted at wheels, 

gravity forces, inertial forces and torques exerted on the center of mass of each 

link, must be decomposed, studied in on-line approach, and defined as 

threshold limits. This requires on-line simulation for the changing occurred in 

rover kinematics, dynamics, configurations, and attitude. Thus, this thesis 

exhibits a new stability measure criterion that is sufficient for mobile robots in 

different surface geometries and configurations: “If the universal moment 

equals the critical moments, the rover will undergo to angular motion and lose 

its stability”. The critical moment is the required moment to  lose one side’s 

connections with ground and rotate the rover about the opposite side. The 

stability measure criterion will be evaluated under the dynamic stability 

consideration for new-manufactured prototype composed of four wheeled-

legged manipulators and can be generalized and common used for whole 

mechanical structured. 
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1.3. Computational kinematics and dynamics 

The rigid multibody system only consists of rigid links connected by 

actuators. To analyze and simulate the kinematics and dynamics of this system, 

it is necessary to study the relative motion, torques, and forces between the 

links. During the past researches on dynamics, the robotic system that consists 

of relatively small numbers of joints was analyzed using graphical and hand 

calculations. However, the mobile robot that consists of large number of joints 

and carries variable load will negatively effect on the joint motions, in such a 

way, the joint’s speed either decreases or increases along a planned path. The 

dynamic characteristics for the manipulators are highly nonlinear system with 

respect to the number of links. It is highly recommended to make the 

calculation on-line, therefore it is required driving all its joints accurately and 

frequently at a sampling frequency higher than 60 Hz [49] for the Stanford arm 

[50], because the resonant frequency of most of the mechanical manipulators 

are around 10 Hz [49, 51, 52]. The advent of high-speed computers and 

computational methods has made it possible to analyze complex dynamic 

systems. 
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The computation proves itself efficiently when the amount of 

computation increases linearly with respect to the number of links, and the 

sampling frequency is higher than 60 Hz.  

 

The joint space equations of motion can be driven via different 

approaches; i.e. Free Body Diagram, Lagrange equation, D’Alembert principle, 

Newton-Euler formulation, Hamilton principle, Gibbs Appell formulation and 

so on. The Free Body approach [53] is easiest approach for no more than two 

links. It draws a free body diagram of a certain manipulator including: all 

external forces by environment, weight exerted by the earth as attraction on the 

center of gravity of the body, ground reactions on supports, as well as the 

contact forces exerted by attached bodies on connections. However, the 

computation for equations of motion will be arduous process for manipulator 

with three or more links by using the Free Body diagram, because each link 

must be described to its preceding link successively while the entire system of 

free bodies is described in the frame work of “inertial coordinates” [49]. 

Therefore, the scientific researchers have focused the attention in development 

of advanced approach capable for treating the daily development of robotic 

mechanism and the increase of the number of links.  The Lagrangian approach 
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[54] is an energy based formulation, since the equations of motion are firstly 

obtained by finding the kinetic and potential energies of the system, and then 

substituting these two results in Lagrange’s equation (L = T - V). The 

Recursive Newton-Euler [55] is deal with kinematics and dynamics properties, 

since the equations of motion are firstly obtained by propagating the velocities 

and accelerations in forward recursion, and then propagating the input 

generalized forces in backward recursion. 

 

The equations of motion of robotic manipulator are typically computed 

via applying either the Lagrange or the recursive Newton-Euler formulation. So 

a lot of researches have extended new versions for the both approaches. The 

comparison between two approaches can be inspired from computational 

complexity, execution time, symbolic simplicity, numeric manner, and accurate 

result. The Lagrange approach firstly consumed long execution time with 

complexity O(n4)  caused by Coriolis and Centrifugal force. Thus, the 

approximation was an improvement technique by ignoring Coriolis and 

Centrifugal forces and making the complexity reduced to O(n3) caused by 

acceleration term. Armstrong [56] put forward the role of recursion in the 
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complexity reduction to O(n), and then a lot of researches have been relied on 

him. 

  

 In 1965, Uicker [54] was the first who introduced the Lagrange 

equations with high complexity O(n4). Then in 1969, Kahn [57] extended it for 

spatial open chain system using 4×4 homogeneous transformations with 

computational complexity O(n3). After that in 1976, Stepanenko and 

Vukobratovic [55] introduced the Newton-Euler equations for spatial open 

chains where each component is referred to base inertial frame with  

complexity O(n3). In addition in 1980, Luh, Walker and Paul [51] reduced the 

complexity of the Newton-Euler Method to O(n) by using recursive 

formulation, and considering each link’s dynamic referenced to its own link 

coordinates or local coordinate system using 3×3 homogeneous 

transformation. In 1980, Hollerback [58] extended the Kahn’s effort and 

succeeded in reducing the complexity of Lagrange’s approach from O(n3) to 

O(n) by using recursive formulation in Lagrang. However, Silver [59] in 1982 

proved that there is no difference between what were developed in these two 

approaches, Recursive Newton-Euler formulation and Lagrange approach.   
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The Lagrangian equations are considered most explicit for formulating 

the equations of motion symbolically, whilst the Newton-Euler is considered 

most efficient in formulating the dynamic equations numerically and 

computationally [60]. For example in order to compute all input generalized 

forces, the authors in [49] reduces the average execution time from 7.9 second 

via Lagrange approach to 0.0335 second via Newton Euler Recursive 

formulation using the same program and manipulators (FORTRAN program, 

and a Stanford manipulator arm using six joints, seven links and a gripper). 

However, the both approaches cannot be implemented practically on-line, 

since the sample frequency is less than 60 Hz, until the author rewrote the 

entire algorithm in assembly language and he reduced the time to 4.5 

millisecond, therefore this execution time enable recursive Euler-Newton 

formulation to be applied online.  

 

Walker and Orin [61, 62] extended the work of Luh et al and made 

application of the recursive Newton-Euler formulation explicit with less 

execution time.   They formulated the equations of motion in explicit form in 

comparison with others; simply it will yield a set of recursive equations, which 

can be applied to the links sequentially to compute the generalized forces 
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referenced in their own coordinates in a short period of time or in on-line 

control. This is the approach which thesis will recommend and base in 

calculations for computing the equation of motion.  

 

In this work, the equations of motion are driven by using Newton-Euler 

Recursive Formulations. The kinematics of links (velocities and accelerations) 

are propagated in forward recursion started from base frame and ending at the 

four end-effectors, link by link. As well as, the dynamics of links (generalized 

forces and moments) are propagated in backward recursion started from four 

end-effectors frame and ending at base frame, link by link. The rover base is a 

driven link, and it moves as a result on the configurations of the four 

manipulators and ground elevation. However, The Newton-Euler Recursive 

Formulations were formulated and applied for various fixed robotic 

manufactures as Puma 560, Elbow, and Standford manipulators; where the 

main platform of the pervious systems is fastened with stationary pillar without 

being under motion and its coordinate frame is considered as universal frame. 

The utilization of the Newton-Euler Recursive Formulations directly is 

incorrect in regarding to mobile robot without taking the platform motion into 

account. The platform attitudes (roll, pitch, and yaw) with respect to the 
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universal frame will also be taken into account as a function of rover 

configurations and surface geometries. In addition, the kinematic values 

(position, velocity, and acceleration) of the platform link will be compensated 

in equations of motion with respect the kinematics of wheels. 

 

However, the previous works have considered the whole components of 

mobile robot as rigid body concentrated in center of mass. But, this work  dealt 

with the kinematics and dynamics of each link apart, and relate between links in 

recursive approach, which can be applied to the links sequentially to compute 

the kinematics and dynamics referenced in their own coordinates in a short 

period of time and in on-line control. 

 

This work exploits Denavit-Hartenburg convention to assign the 

coordinate frames. Besides, homogeneous transformation matrix will relate 

between each two adjacent coordinate frames starting from base and ending at 

four end-effectors. Moreover, forward kinematics will directly relate the base 

frame to the end-effectors. Plus, the roll, pitch and yaw angles are unknown 

variables and they are functions of system configurations and ground 

geometries. As well as, The homogeneous transformations of surface frame 
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(contact point) with respect to wheel frame of each end-effector will also be 

computed as functions of joint configurations and ground geometries.  

 

Because four legs are considered indeterminate system, in this thesis the 

normal forces are evaluated for three contact legs in the case the non-

symmetric rover. However, in the case of symmetric configurations the normal 

forces are distributed equally between the sides which sharing the same the 

inertial forces, ground geometries, and platform attitude. Thus, regarding to 

four legs the normal forces are evaluated by considering each two legs sharing 

the same value. 

 

A new dynamic stability criterion is presented and operating arbitrary on 

various shapes of surfaces, and variable rover configurations. In addition, this 

criterion provides on-line calculations for the effect of rover configurations, 

various surface geometries, platform attitudes, kinematic values, dynamic 

effects, and variable ground normal forces. 
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Chapter Two 

2. Kinematics of  the rover 

In this chapter the coordinate frames will be assigned by using Denavit-

Hartenburg convention “DH”, and then DH parameters will be specified 

between each two adjacent frames. Besides, this chapter will relate between 

each two adjacent coordinate frames using homogeneous transformation 

matrix starting from base and ending at end-effectors. Moreover, we will 

directly relate the base frame to the end-effectors throughout a forward 

kinematics. The forward kinematics provides us the position and the 

orientation of the end-effectors with respect to the base frame as a function of 

joint configurations. After all, the platform attitude will be specified with 

respect to universal frame through roll, pitch, and yaw orientations. However, 

the roll, pitch and yaw angles are unknown variables and they are functions of 

system configurations and ground geometries. Therefore, we will integrate the 

work mentioned above for finding the attitude angles. 
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The homogeneous transformations of surface frame (contact point) with 

respect to wheel frame of each end-effector will also be computed as functions 

of joint configurations and ground geometries.  

 

The homogeneous transformation of the ground universal frame with 

respect to the platform universal frame will also be computed as functions of 

joint configurations and ground geometries too. 

 

2.1. Coordinate frames     
  

This work considers a reconfigurable rover. The rover has four legs, and 

each leg consists of five links connected through four revolute joints. The first 

step is to return the leg to home position where all joint angles are set to home 

position values. Coordinate frames are assigned according to the DH 

convention. The joints are labeled as i= 1 to 4, and links’ end-terminal are 

labeled with a frame number Oi (i= 0 to 4) starting from O0 as base frame 

(platform) to O4 as an end-effector frame (wheel). The joint axes zi are assigned 

along the axes of rotation as show in Figure 2.1: 
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Figure  2.1. Joint axes assignments and frame numbering for the Rover. 

 
 

Based on joint axes shown in Figure 2.1, we complete the three 

orthonormal coordinate systems (xi, yi, zi). For parallel joint axes, zi×zi-1=0, xi 

axis is assigned along the common perpendicular in the line directed from 

frame Oi-1 to Oi, and for intersecting joint axes, xi axis is perpendicular to the 

plane or parallel to the vector cross product ±zi-1×zi as shown in Figure 2.2: 
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Figure  2.2. xi-axis setting up. a. In parallel joint axis, xi axis is in the line directed from 
frame Oi-1 to Oi. b. In intersecting joint axis, xi axis is perpendicular to the plane or 
parallel to the vector cross product ±zi-1×zi. 
 

The yi-axis is defined in the direction needed to complete a right-handed 

orthonormal coordinate frame (xi, yi, zi). 

 

x1 is perpendicular to the plane containing the two intersecting axes z0 

and z1. Then x0 is to align with x1 (of course in home position). x2 is also 

perpendicular to the plane containing the two intersecting axes z1 and z2 in 

similar way in assigning the x1. Finally because z3×z2=0, x3 is to be assigned 

along the common perpendicular between the z2 and the z3 axes. These 

procedures will be commonly repeated for the four wheeled-legged 

manipulators. 

a. b.

Oi 

Oi-1 

xizi 
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For the coordinate frame of End-effector link (x4, y4, z4), z4 is assigned 

in parallel to z3. x4 is assigned along the common perpendicular between the z3 

and z4. y4 assignment is based on the right hand coordinate frame. The 

coordinate systems (xi, yi, zi), i=0…4, from the base frame to the end-effector 

frame are shown in Figure 2.3: 

 

 

 

 

 

 

 

 

 
Figure  2.3. Assignments of coordinate frame on the form of home position. 

The coordinate system (xi, yi, zi) for i =1,2,3,4 is assigned at the end-

terminal of link i and hence it moves with link i, and zi represents the motion 

of link i+1. The system (x0, y0, z0) is assigned at link 0, the platform center, and 

hence it moves with platform, and z0 represent the motion of link 1. 
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2.2. Denavit-Hartenburg parameters 

So far, we have completed the designation of coordinate frames. 

Currently, we need to describe the kinematics of the robot by describing the 

position and orientation of each link with respect to the previous link using 

DH approach. In a simple manner, each pair of successive joints is 

characterized by a link length between joint axes a, a twisted angle between 

joint axes α , a link offset d, and a joint angle θ . The description for these four 

parameters can be given as follows: joint angle, iθ , is a rotating angle between 

the xi-1 and xi axes about zi-1 axis. Link offset, di, is a translating distance from 

xi-1 and xi along zi-1. Link length, ai, is a translating distance from zi-1 and zi 

along the xi. Finally, twisted angle, iα , is a rotating angle between zi-1 and zi axis 

about xi axis. See Appendix A.  

 

Applying the notations of DH parameters for one manipulator and for 

each adjacent joints starting from base frame O0 to end-effector frame O4 as in 

Figure 2.4:   
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Figure  2.4. Pairs of two adjacent links.  
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Filling the table up with DH parameters, we obtain: 

Table  2.1. Kinematic parameters table based on DH convention. 

Link Joint type Variable Link offset
d 

Link length
a 

Twist angle 

α  

1(0-1) revolute θ 1 d1 0 -90 

2(1-2) revolute θ 2 0 0 90 

3(2-3) revolute θ 3+180 0 a3 0 

4(3-4) revolute θ 4 0 a4 0 
 

Since the rover has revolute joints only, all generalized coordinate 

variables are rotational angles about their own rotational axes. The generalized 

coordinates, (qi = iθ , i=1,…,4), describes the motion in four-dimensional 

vector of each legged manipulator. 

 [ ]T4321i θθθθq =  (2.1) 

The notations of generalized coordinates will match joint velocities and 

joint accelerations, respectively, as follows in equations 2.2 and 2.3: 

 [ ]T4321i θθθθq &&&&& =  (2.2) 

 [ ]T4321i θθθθq &&&&&&&&&& =  (2.3) 
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These velocities and accelerations will be transformed forward later in 

Chapter 3 using Newton-Euler Recursive Relations. 

 

2.3. Homogeneous transformation: 

The adjacent frames are related with each other through the use 4×4 

homogeneous transformation matrix, A, which represents the orientation and 

position of the coordinate system Oi relative to Oi-1. The 1i
iA −  transformations 

for the rover using DH convention are given as follows: 
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For simplicity, the notations are employed to abbreviate the cosine, sine 

and related trigonometric formula as follows: 

( )
( ) jijijiiJ

jijijiiJ

ii

ii

SθSθCθCθθθCC
SθCθCθSθθθSS

cosθC
sinθS

−=+=

+=+=
=
=

 

2.4. Forward kinematics 

The forward kinematics is to find the position and the orientation of the 

end-effector relative to base frame if the angles of joints and geometric 

parameters of manipulator links are given. Mathematically, it is a chain product 

of successive homogeneous transformations moving forward from the base 

frame out to the end-effector frame.   
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1 2 34 1 34 1 2 34 1 34 1 2 1 2 4 34 3 3 1 4 34 3 3

1 2 34 1 34 1 2 34 1 34 1 2 1 2 4 34 3 3 1 4 34 3 3

2 34 2 34 2 2 4 34 3 1
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⎢ ⎥− − − − + − +⎢ ⎥= ⎢ ⎥− + +
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.8) 

 

The above equation, which describes the posture of the rover, is a 

function of joint variables, in which they were transformed into a Cartesian 

frame relatively to base frame. In other words, the computed matrix 0
4A  can be 

considered generalized matrix 0
4B  providing 3×3 orientation matrix and 3×1 

position vector of the last frame O4 with respect to the base frame O0. The 

orientation matrix describes the approach vector a, the orientation vector o, the 

normal vector n. The position vector, p, is the position of the end-effector with 

respect to base frame. 
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In order to reduce the amount of computations, the first column of  0
4B  

may be obtained as the vector cross product of the second and third columns 

aon ×=  (2.10) 
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The position vector from the platform’s base frame to the wheel frame 

is the fourth column of equation 2.8; we obtain equation 2.11 which can be 

denoted in Figure 2.5 
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Figure  2.5. Position vector from base to end-effector frame. 
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2.5. Base frame 

Our mobile platform is a base link connected to a differential gear joint. 

Each end-terminal of this differential gear is connected with another link as 

shown in Figure 2.6.  

 

 

 
Figure  2.6. Differential gear joint 

There are two base frames attached on the differential gear joint, i.e. O0L 

and O0R, and they are located in the central platform as shown in Figure 2.7.  

 

 

 

 

Figure  2.7. Two frames attached at the base link. 

From the rider's point of view, z0R is the right lateral axis and z0L is the 

left lateral axis, y0R is the front longitudinal axis in the direction of travel and 

y0L is the rear longitudinal axis, finally x0R and x0L are axes running as one axis 

vertically with respect to the platform plane. 
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The homogeneous transformation, from right base frame to left base 

frame, is simply rotation about x0R axis by ±180 degree. See Figure 2.7. 
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The homogeneous transformation, from left base frame to right base 

frame, is also equal the transformation matrix from right to left base frame; that 

is simply rotation about x0L by ±180 degree. 
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2.6. Platform frame  
 

However, we can choose one of the two base frames as platform frame 

for simplicity. In this work, we referred the right base frame as platform frame. 

Applying the above rules and procedures on the four legs as shown in 

transformation graphs in Figure 2.8, it shows the homogeneous 

transformations between two adjacent links. Besides, the forward kinematics 

transformations from the platform frame to the four wheel frames of the four 

legs can be obtains respectively as, 

Forward kinematics for right front leg: 

RF3
RF4

R2
RF3

R1
R2

R0
R1

R0
RF4 AAAAA ⋅⋅⋅=  (2.14) 

Forward kinematics for right rear leg: 

RR3
RR4

R2
RR3

R1
R2

R0
R1

R0
RR4 AAAAA ⋅⋅⋅=  (2.15) 

Forward kinematics for left front leg: 

LF3
LF4

L2
LF3

L1
L2

L0
L1

R0
L0

R0
LF4 AAAAAA ⋅⋅⋅= ⋅  (2.16) 

Forward kinematics for left rear leg: 

LR3
LR4

L2
LR3

L1
L2

L0
L1

R0
L0

R0
LR4 AAAAAA ⋅⋅⋅⋅=  (2.17) 
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Figure  2.8. Transform graph for the four legs, starting from platform frame to end-
effector frame. 

 

 

 

 

 
 
 
 
 
 

Figure  2.9. The frames for the four legs, 
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2.7. Wheel kinematics  

Kinematics of the wheel is a study concerned with describing the way in 

which the wheel moves. In this thesis, the wheels are only employed as driven 

links for the purpose of locomotive propulsion. In the presence of driven 

system, each wheel has only one rotational degree of freedom in term of 

angular variable. The rotational motion of the rigid wheel occurs about a rolling 

axis z3 by angle value 4θ . The rolling axis is simply a line axis going 

perpendicularly through the center of the wheel. The translational motion of 

the rigid wheel occurs on the ground and in a straight line. The mechanical 

purposes of the wheel link and the wheel angle can be described under two 

factors; manipulation and locomotion: 

− Manipulation factor:  

In the case of manipulation purposes, the wheel end-effector frame is 

simply a touch point with surface. It is denoted with O4 (x4, y4, z4) and is 

setting up as follows: x4 axis is normal to the rim of wheel; y4 axis is in tangent 

direction of the rim of wheel; and z4 axis is directed perpendicularly to wheel 

plane. See Figure 2.10 which shows three selected points (P1, P2, and P3) on the 

rim of wheel. 



 

 

50

 

 

 

 

 

 

Figure  2.10. The coordinate frame of manipulated wheel. 
 

The position vector of contact point O4 with respect to base frame O0 is 

dependent on the configurations of rover ( 1 2 3 4θ ,θ ,θ ,θ ). The manipulated 

variable 4θ  is simply arc angle which is rotating about x3 axis is dependent on 

differential joint angle 1θ , shoulder joint angle 3θ , pitch angle θ , and surface 

geometry 3β . These factors will be explained in coming sections. 

The manipulation angle 4θ  (arc angle value) is considered in the 

following calculations:  

1. Roll angle ( )φ . 

2. Forward kinematics: the orientation matrix and position vector of the 

manipulated links with respect to base frame must treat 4θ . 

3. Inverse kinematics. 

P2 

P1 

y4 

x4 

x4 

y4 

x4 

y4 

P3 



 

 

51

− Locomotion factor:  

In locomotion purposes, the wheel is considered as driven link with 4θ  

which in turn is considered the angle of wheel rotation generated from motor 

torque. The angular acceleration of the wheel can be evaluated as,  

t 4
4

4

vθ a=
&&&  (2.18) 

Then in general, the kinematic equations of the rotational wheel are 

determined under assumed constant angular acceleration 4θ&&  as follows 

tθθθ 40,44
&&&& +=  (2.19) 

2
40,4,044 tθ2

1tθθθ &&& ++=  (2.20) 

The travel length of wheel movements on ground is directly 

proportional to generalized joint coordinate of wheel link 4θ  and the radius of 

wheel a4.  

 

 

 

 

 

Figure  2.11. Wheel angular movement tracked linearly on ground. 
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wheel travel length = 44θa  (2.21) 

 

The locomotive angle 4θ  (rotation angle value) is considered in these 

calculations: 

1. Linear displacement, velocity, and acceleration of wheel tracked linearly 

on the ground. 

2. Linear displacement, velocity and acceleration of platform frame with 

respect to universal frame expressed in universal frame, i.e. U
Uv  and U

Uv&  

respectively. 

3. Generalized coordinates of angular displacement, velocity and 

acceleration )q,q,(q 444 &&& those are substituted in forward recursion. 

4. In addition, yaw angle ψ  resulted from variance of wheels’ velocities. 
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2.8. Platform kinematics  

The above mentioned can be extended by including a coordination 

between the locomotion and manipulation. Each two legged manipulators on 

both sides of the rover are locomoted by two wheels at same velocity. 

However, each side is locomoted at different velocity relatively to the opposite 

side. These differences in velocities between two opposite sides will rotate the 

faster side around the slower side, and in result these will rotate the entire rover 

about the yaw axis xU.  

 

The rover moves in forward and backward direction according to the 

fixed rotation of the wheels on ground, and rotates on right and left direction 

according to the difference of wheels’ velocities. Thus, we will define the 

relationship between the angular velocity of the wheels and the travel path of 

the vehicle body on the ground. In addition, we will coordinate the processes 

of locomotion with manipulation expressed in the universal frame.  

 

We will make our calculations dependent on the contact wheels with 

ground. Moreover, we will choose kinematic values of one wheel from each 
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side, i.e. R4θ  and L4θ , even if the all wheels are in contact with ground.  On the 

right side R4θ  rotates about z3R, and on the left side L4θ  rotates about z3L in 

term of counter clock wise direction. However z3L has inverse direction 

relatively to z3R as shown in Figure 2.12. z3L can be transformed to be pointing 

to the direction of z3R by multiplying  L4θ  by negative sign.  

 

In order for moving forward, it is required to manipulate the 

configurations of the wheels in adequate angles and direction. R4θ  must rotate 

in counter clockwise direction in positive valued and L4θ  must rotate in 

clockwise direction in negative value as shown in the following Figure 2.12 

 

 

 

 

 

 

 

Figure  2.12. Two opposite wheels enabling the rover for rotating forward, the arc length 
of the wheel is tracked on ground, from start to finish of the travel. 
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Therefore, the travel path of right wheel and left wheel on ground can 

be obtained respectively as   

Rd  = 4 4Ra θ⋅  (2.22) 

Ld  = 4 4La θ⋅  (2.23) 

 

The rover travel is generated from the linear movement of wheels on the 

ground. The travel path of the rover body is the average of the travel lengths of 

right and left wheels. 

R L 4 4R 4 4L
B

(d   d ) a θ a θd  2 2
+ ⋅ + ⋅

= =  (2.24) 
 
 

The instantaneous linear velocity of the wheels is equal the derivation of 

travel path with respect to time, or in other words, the rate of change in the 

travel path with respect to time. 

R4tv  = 4 4Ra θ⋅ &  (2.25) 

tLRv  = 4 4La θ⋅ &  (2.26) 

 

The robot's velocity is the rate of change in the robot's position with 

respect to time. Thus, linear velocity of robot body is rate of change of the 

average of the wheeled travel lengths with respect to time. 
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4 4R 4 4L
B

a θ a θv  2
⋅ + ⋅

=
& &

 (2.27) 

 

The linear acceleration of the wheel is the rate of change of the velocity 

of the wheel with respect to time 

R4tv&  = 4 4Ra θ⋅&&  (2.28) 

tLRv&  = 4 4La θ⋅&&  (2.29) 

 

The robot's acceleration is the rate of change in the robot's velocity with 

respect to time  

4 4R 4 4L
B

a θ a θv  2
⋅ + ⋅

=
&& &&

&  (2.30) 
 

In any way, the rover motion on the non-flat surface and the links 

motions about their joint axes yield a change in the orientations of the platform 

frame. This different platform’s attitude will be referred with respect to the 

universal frame. Both universal frame and platform frame have same origin on 

the center of platform (no translation), but different orientations as shown in 

Figure 2.8. These orientations can be described in different techniques, e.g. Roll 

Pitch and Yaw, Euler Angle representation, or Directional Cosine 

representation. This work chose Roll, Pitch and Yaw method.   
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2.9. Platform universal frame  

The rover motions are referred with respect to right-hand orthogonal 

coordinate frame, called the universal frame OU (xU, yU, zU). In other words, 

the coordinate frames and equations of motion of each link are considered with 

respect to. It is located at the center of platform forming the horizontal plane, 

yU-zU, parallel to ground plane, and xU axis is normal to ground plane directed 

upward as shown in Figure 2.13.  

The Orientations are measured from the attitude of the body in three 

dimensions (Roll, Pitch and Yaw). These independent motions cause three 

rotational degrees-of-freedom as shown in Figure 2.13. In our case, zero 

translation is between the two frames. The body’s attitude, which is referred 

about the universal frame, can be broken down into: roll corresponds to a 

rotation φ  about the longitudinal yU-axis, pitch corresponds to a rotation θ  

about the lateral zU-axis and yaw corresponds to a rotation ψ  about the normal 

xU-axis. As supposed the sequential order of rotations is as following: 

• Rotation of ψ  about xU-axis. 

• Rotation of θ  about zU-axis. 

• Rotation of φ  about yU-axis. 
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Figure  2.13. Body attitude provides three rotational degrees-of-freedom (φ ,θ ,ψ ), 
assuming congruent frames for platform and universal frame at the beginning. 

 

In simpler manner, any 3-Dimensional rotation is conventionally defined 

as a rotation in 2-Dimensional counter-clockwise direction along positive axis 

of rotation. So firstly we specify the axes of rotations about universal frame, 

and secondly the rotation angles in radian as shown in Figure 2.14: 

 
 
 
 
 
 
 
 
 
 
 

Figure  2.14. Roll motions about yU axis by φ  angle, Pitch motions about zU axis by θ  
angle, and Yaw motions about xU axis by ψ  angle. 
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These series of body’s rotations, around the universal frame, can be 

described in three matrices. Moreover, these matrices can be combined by 

multiplications with each other orderly as follows: 

U
R0A = RPY(φ ,θ ,ψ ) = Rot (yU, φ ) Rot(zU, θ ) Rot(xU, ψ ) 
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⎥
⎥
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⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= −
⋅

−

⋅
−

1000
0cossin0
0sincos0
0001

1000
0100
00cossin
00sincos

1000
0cos0sin
0010
0sin0cos
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⎥
⎥
⎥
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⎢
⎢
⎢

⎣

⎡

+−+−
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++−
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1000
0ccssssccsscs
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ψφψθφψφψθφθφ
ψθψθθ

ψφψθφψφψθφθφ

 (2.31) 

 

U
R0A  is a homogeneous transformation from the universal frame OU to 

the body frame O0R. These three attitude angles can be generated as a result of 

influences of geometric configurations of the manipulators and ground 

geometries. However, the order of rotations is an important, which means it is 

not commutative. Thus, the sequential order of rotations is not a matter of 

suppositions, but it is definitely subjected to the orders of sudden changes in 

ground geometries and joint configurations that will cause platform’s 

orientations.  
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If the platform is congruent to a universal base frame, the homogeneous 

transformation from the universal frame OU to the body frame O0R will be 

unity matrix: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0010
0001

AU
R0  (2.32) 

 

The homogeneous transformation between universal and left base frame 

is post-multiplying  U
R0A  by R0

L0A  

R0
L0

U
R0

U
L0 AAA ⋅=  
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 (2.33)  

 

 
 
 
 
 

Figure  2.15. Transform graph of universal frame and two bases frames.
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Figure  2.16. The transform graph of rover frames. 
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2.9.1. Attitude angles  

The previous roll, pitch, and yaw angles of platform frame with respect 

to universal frame are influenced by joint configurations of the manipulators 

and geometric ground input systems. The geometric configurations of the 

manipulators are function of joint variables ( 1 2 3 4θ ,θ ,θ ,θ ) that formulate the 

rover posture. 4θ  must be taken into accounts that where it must be treated as 

manipulation purpose or locomotive purpose. The ground input systems are 

functions of altitudes from ground universal level to wheeled-ground contact 

points. 

 

The calculation of stability measure must meet conditions required when 

at least three legs are in contact with the ground surface all the time. 

Meanwhile, one supported leg from each side (one from left side and the 

second from right side) is enough for covering the required calculations as 

shown in Figure 2.17.  
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Figure  2.17. The geometric configurations and ground input Systems relative to the two 

legged manipulators. 
 

The robot remains stable with three supported legs on ground while the 

fourth leg remains without contact. One supported leg from each side is 

chosen for our computations and we will remark it by K. K is stands for the 

chosen leg and it is either front leg or rear leg under conditions of connectivity 

with ground as shown bellow  
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oaleg  means that the leg is not in contact with ground. 

 

As explained in this example: assume right front leg is on air without 

contact with ground as shown in the following Figure 2.18 

 
 
 
 
 
 
 
 
 

Figure  2.18. The black circle indicates for supported legs and white circle indicates for 
not supported legs with the ground. 

 
 

On right side, the front leg is denoted with RK; and on the left side, the 

rear leg is represented with LK. 
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2.9.1.1 Pitch angle 

Pitch angle corresponds to a rotation of the platform by θ  about the 

lateral zU axis as a result of differential joint rotation, rover configurations and 

surface geometries. z0R axis and zU axis are contingent and pointing toward the 

right lateral side of the platform. z0L axis is in opposite direction of zU axis 

pointing toward the left lateral side.  

 

The pitch angle is firstly resulted from the difference average between 

the angle of right rotary link R1θ  and the angle of left rotary link L1θ  as shown 

in Figure 2.19: 

(1) 1R 1Lθ θ
2

θ −
=  (2.34) 

 

 

 

 

Figure  2.19. Pitch angle. 
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θ  is valued a positive angle about zU-axis, when the platform rotates in 

counter-clock wise direction, or on other word, when R1θ  is positively greater 

than L1θ . 
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Figure  2.20. Rotation about lateral axis of universal frame by θ . 

xU

yU

y0R

x0R
θ

R1θ

L1θ

θ

θ



 

 

67

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  2.21. Elevation difference 
 

And secondly it resulted from the elevation difference between the front 

and rear legs and rover configurations. Applying Pythagorean relations, the 

trigonometric sine function is 
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Where, 
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( )0R
4RR 1R 2R 4 34RF 3 3RF 1R 4 34RF 3 3RFy0R

r = S C (a C + a C ) C (a S + a S )− −  (2.36) 

( )0R
4RR 1R 2R 4 34RR 3 3RR 1R 4 34RR 3 3RRy0R

r = S C (a C a C ) C (a S a S )− + − +  (2.37) 

 

Finally the pitch angle is equal to 

(1) (2)θ θ θ= +  (2.38) 
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2.9.1.2 Roll angle 

The roll angle corresponds to a rotation of the platform by φ  about the 

longitudinal yU axis. y0R axis and yU axis will be contingent and pointing toward 

the front longitudinal view of the platform if and only if the rover is 

manipulated at symmetric configurations and moving on flat surface:  

 

 

 

 

 

 

 

 

 

 

Figure  2.22. Front view shows the platform rotating about longitudinal axis of universal 
frame byφ . y0-axis and yU-axis are pointing out of paper. 
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The wheel frame O4RK is assigned at the contact point located as an end-

effector where θβ −+−−= RK3R1RK4 θθθ . The roll angle about yU axis is 

computed by using Pythagorean relations; the opposite side is the altitude 

difference between the RCF and LCF altitudes; the hypotenuse side is the 

lateral length of the platform.  

 

 

 

 

 
Figure  2.23. Pythagorean relations. 

 

The trigonometric sine function is 
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=φ  (2.39) 

Where, 
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φ  is valued a positive angle about yU axis, when the platform rotates in counter-

clockwise direction, or on other words, when the RCF altitude is higher than 

the LCF altitude. 

 

− Right conjunctional Altitude: 

Mathematically, the altitude from O1R to ground frame OG is equal the 

summation of the altitude from O1R to O4RK, and the altitude from O4RK to 

ground frame OG 

( ) ( ) ( )
( ) ( ) ( )

UUU

UUU

x
RK4

Gx
U
R1x

U
RK4

x
RK4

Gx
R1
RK4x

R1
G

rrr

rrr

+−=

+=
 (2.40) 

 

These calculations have to be referred to universal frame as shown in Figure 

2.24: 
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Figure  2.24. The altitude of RCF O1R to ground frame OG 

 

The mathematical subtraction of U
RK4r  and U

R1r  will provide us ( )UR1
RK4r , 

where ( )
Ux

U
R1r  is the first row and fourth column of the homogeneous 

transformation matrix of frame O1R with respect to universal frame OU 
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Thus,  

( ) φsindr 1x
U
R1 U

=  (2.42) 

 

And ( )
Ux

U
RK4r  is the first row and fourth column of homogeneous 

transformation matrix from universal frame OU to end-effector frame O4RK, 

( ) ( )
( )1RK33RK344R2
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U
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Finally as mentioned,  
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− Left conjunctional Altitude 

Mathematically, The altitude from frame O1R to frame OG is 

mathematical summation of xU-component of position vectors from LCP 

frame O1L to GCP, ( )
Ux

L1
LK4r , and system input from GCP to ground frame, 

( )
Ux

LK4
Gr : 
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Where, mathematical vectors subtraction of U
LK4r  and U

L1r  will provide us 

( )UL1
LK4r ; U

L1r  is the fourth column of the homogeneous transformation matrix of 

frame O1L with respect to universal frame OU: 
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Thus,  

( ) φsindr 1x
U
L1 U

−=  (2.47) 

 

 

 

 

Figure  2.25. Coordinate frames of OU, O0R, O0L and O1L 
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The roll angle about yU-axis can be obtained by using Pythagorean 

relations as shown in Figure 2.23: 
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The geometric sine function as explained 
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Therefore, this trigonometric equation can be simplified as fellows 
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Rearranging and simplifying the above equation, 
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Applying the trigonometric identity [63] in order to transform eq.2.52 into a 

basic trigonometric equation, 
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The equation becomes, 
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Finally, the roll angle is  
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2.9.1.3 Yaw angle 

The yaw angle corresponds to a rotation about the vertical axis of the 

platform universal frame; xU-axis represents the axis of rotation, and ψ  

represents the angle value of rotation as shown in Figure 2.26:   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure  2.26. Rotation about vertical axis of universal frame byψ . 
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Explicitly, the human eyes can recognize the yaw rotation as a horizontal 

change in the positions of right and left conjunctions, as shown in the 

following side and front view Figure 2.27.  

 

 

 

 

 

 

 

 
Figure  2.27. Side view shows the difference in the locations of LC and RC, and top view 

shows the rotational yaw angle ψ  occurred between the universal and platform frame. 
 

Implicitly, the yaw angle is yielded from the differential velocities 

between the right and lift locomotive wheels. The different wheels’ velocities 

make the faster wheel rotating around the slower wheel, as well as make the 

entire rover rotating around the xU component of the universal frame. This 

difference defines the relationship between the movements of the wheels and 

the orientation of the rover with respect to universal frame.  

 

yU, y0 
zU, z0 

RC and LC 
RCLC

y0 z0

ψ

After 
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In general, the travel of the rover is generated from the angular 

movements of locomotive wheels on the ground. The travel length of wheel 

movement (d) on ground is directly proportional to generalized joint 

coordinate of wheel link ( 4θ ) and the radius of wheel ( 4a ).  

 
The length of travel may be tracked along either line path if the two 

sides move with the same velocity or arc path if the wheels on one side move 

faster than that opposite side as shown in Figure 2.28: 

 

 

 

 

 

 

Figure  2.28. a. Arc path occurs when 4 4Ra θ  ≠ 4 4La θ  
                     b. Line path occurs whenever 4 4Ra θ = 4 4La θ  

 

The rover posture on Figure 2.28.a shows that ψ  is positive value angle 

rotating around xU axis in counter clockwise direction whenever the left wheels 

are moving at higher speed than the right wheels. 

4 4Ra θ

4 4La θ

ψ

(a) (b) 
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The rover will travel forward along y0R axis if R4θ  rotates about z3R in 

counter-clock wise direction and L4θ  rotates about z3L in clock wise direction, 

and vice versa. 

 

Mathematically, we can find yaw angle through using arc laws. The arc 

length is the difference in the number of wheeled rotations on ground 

i.e. 4 4L 4 4Ra aopposite θ θ= − , the radius is the lateral distance between the 

opposite wheels. As shown in Figure 2.12, the arc length for the wheels on 

right side and left side, respectively, can be obtain as 

4 4RA a θψ⋅ =  (2.57) 

4 4LB a θψ⋅ =  (2.58) 

 

Subtracting the two equations from each other, we obtain 

4 4L 4 4R

1 4 4L 4 4R

(B A) a θ a θ
2d a θ a θ

ψ
ψ

− ⋅ = −
⋅ = −

 

4 4L 4 4R

1

a θ a θ
2dψ −

=  (2.59) 

 

The above equation can be extended to include the case when the rover 

opens its legs aside as shown in Figure 2.29 
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Figure  2.29. Front view shows the four legs open by an angle about z1R 

 

( ) ( )

( )

0 R 0 R

4 4L 4 4R
0R 0R
4RK 4LKz z

4 4L 4 4R

2R 4 34RK 3 3RK 1 2L 4 34LK 3 3LK 1

a θ a θ
r r

a θ a θ
S (a C a C ) d S (a C a C ) d

ψ −
=

−

−
=

+ + − − + −

  

    4 4L 4 4R

2R 4 34RK 3 3RK 2L 4 34LK 3 3LK 1

a θ a θ
S (a C a C ) S (a C a C ) 2d

−
=

+ + + +
 (2.60) 
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2.10. Rover transform graph 

So far, we find the homogeneous transformation from universal frame 

OU to base frame O0, and the forward kinematic transformations from base 

frame O0 to wheel frame O4. However, the homogeneous transformations 

starting from wheel frame O4 passing by surface frame OS to ground frame OG 

are not yet defined. Moreover, the homogeneous transformation from platform 

universal OU to ground universal OG is also not computed. Therefore, the rover 

transform graph is not completed as shown in Figure 2.31. 

 

2.10.1. Ground universal frame 

The platform universal frame OU and ground universal frame OG have 

the same orientations which are fixed, but there is variable position, U
Gr , 

separating between these two frames. Therefore, the 3×3 rotational matrix that 

relates these two frames, OU and OG, is identity matrix, and the 3×1 position 

vector is a function of the input system and the configurations of manipulators. 

⎥
⎦

⎤
⎢
⎣

⎡
= ××

10
rI

A 13
U
G33U

G  (2.61) 
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The variable position vector, U
Gr , is the summation of the position vector 

U
4r  from platform universal frame to wheel frame and the position vector 4

Gr  

from wheel frame to ground universal frame 

4
G

U
4

U
G rrr +=  

( )
( )
( )

( )
( )
( )

( ) ( )
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⎥
⎥
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⎣

⎡
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⎥
⎥

⎦
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⎢
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G

z
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4

y
U

4

x
U

4

 (2.62) 

 

The magnitude of the position vector 4
Gr , from wheel frame to ground 

frame, is definitely equal to the magnitude of position vector G
4r , from ground 

frame to wheel frame, but in opposite direction 

G
RK4

RK4
G rr −=  (2.63) 

 

The input system ( )
Ux

G
4r , is the vertical altitude from ground universal 

frame to wheel frame (end-effector). The position vector U
4r  is a function of 

joint variables that formulate the rover posture and decide the location of 

ground contact point. 
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Finally, the combination of identity orientation matrix and the computed 

position vector defines the homogenous transformation from the platform 

universal frame OU to the ground universal frame OG  

( ) ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡ +

=

1000
0100
0010

rr001

A

UU x
4
Gx

U
4

U
G  (2.64) 

 

 

 

 

 

 

 

 

 

 

 
Figure  2.30. Platform universal frame, wheel universal frame, and ground universal 

frame are contingent frames for being having the same orientations. 
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2.10.2. Universal wheel frame 

After finding 4×4 homogeneous transformation matrix of Roll, Pitch 

and Yaw, and A’s from platform to end-effectors, we can find the pose of the 

wheel frame with respect to the universals; OU, OW, OG.  

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure  2.31. Completed transform graph. 
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Since the platform universal, wheel universal, and ground universal have 

the same and fixed axes, the orientation matrix of wheel frame with respect to 

any one of these universal frames can be the same as 

G
4

W
4

U
4 RRR ==  (2.65) 

 

The pose of wheel end-effector with respect to a certain frame is simply 

the study of orientations and the position vector. The orientations are defined 

in three angles values (α1, α2, α3) respectively about (xU, yU, zU axes), (xW, yW, 

zW axes), or (xG, yG, zG axes). The position vector is defined as 0
4r  as shown in 

the following Figure 2.32: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  2.32. End-effector pose 
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The solutions for angles are specified here using roll, pitch, and yaw 

approach. The roll is a rotation about y-axis by α 2, the pitch is a rotation about 

z-axis by α3, and yaw is a rotation about x-axis by α 3 

         W
4T = Rot(yW, α 2) Rot(zW, α 3) Rot(xW, α1)  
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 (2.66) 

 

The roll, pitch and yaw approach has no translational vector, thus px, py 

and pz must equal zero. In any way, if we pre-multiply Equation 2.66 by 

Rot(yW, α 2)-1  we obtain 

Rot (yW, α 2)-1 W
4T  = Rot(zW, α 3) Rot(xW, α1) (2.67) 

 

The left hand side is 
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 (2.68) 

 

The right hand side is 
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⎥
⎥
⎥
⎥
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⎣

⎡
−

−

=

1000
0cαsα0
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11

13133

13133

 (2.69) 

 

The third row, first column element on the right hand side is zero. 

Equating this to the element on the left hand at the same location we obtain 

0ncαnsα z2x2 =+  (2.70) 

then, 

)n,n2(atanα xz2 −=  (2.71) 

 

Equating the 1,1 and 1,2 elements from left and right hand sides we obtain 

3z2x2 cαnsαncα =−  (2.72) 

                  3y sαn =  (2.73) 

then, 

)nsαncα,2(natanα z2x2y3 −=  (2.74) 

 

Equating the 3,2 and 3,3 elements from left and right hand sides we obtain 

z2x21 acαasαcα +=  (2.75) 

z2x21 ocαosαsα +=  (2.76) 



 

 

90

then  

)acαasα,ocαo2(sαatanα z2x2z2x21 ++=  (2.77) 

 

6 multiplies, 3 additions, and 3 transcendental function calls. 
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2.10.3. Surface geometries 

This work takes the shape of surface geometry traversed by the rover 

into account; (flat surface, step surface, inclined surface, sinusoidal surface, 

random surface). The surface frame is an orientation axes with respect 

universal ground frame OG setting up as follows: xS axis is normal to surface; yS 

axis is in tangent direction of contact surface; and zS axis is directed 

perpendicularly to xS-yS plane. See Figure 2.33 

 

 

 

 

 

 

 

 

 

Figure  2.33. Surface frame. 

The homogenous matrix of surface frame with respect to universal 

ground frame, can be given by Roll, Pitch, and Yaw, 
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G
SR   = RPY( 2β , 3β , 1β ) = Rot (yG, 2β ) Rot(zG, 3β ) Rot(xG, 1β ) 

       
2 2 3 3

3 3 1 1

2 2 1 1

C β 0 Sβ C β Sβ 0 1 0 0
0 1 0 Sβ C β 0 0 C β Sβ
Sβ 0 Sβ 0 0 1 0 Sβ C β

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ ⋅ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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3 3 1 3 1
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cβ cβ cβ sβ cβ sβ sβ cβ sβ sβ sβ cβ
sβ cβ cβ cβ sβ

sβ cβ sβ sβ cβ cβ sβ sβ sβ cβ cβ sβ

− + +⎡ ⎤
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⎢ ⎥− + +⎣ ⎦

 (2.78) 
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The touching point occurs between wheel and surface, and its position 

vector with respect universal ground frame is given by 

 

( )
( )
( )

U

U

U

G
4 x

G U
S 4 y

U
4 z

r

r r

r

⎡ ⎤
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

 (2.79) 

 

Because the surface frame OS, universal wheel frame OW, and end-

effector frame O4 are situated at the same point, those frames have the same 

position vector as obtained in equation (2.80)  

G G G
S w 4r r r= =  (2.80) 

 
The homogeneous transformations starting from wheel end-effector 

frame O4 and surface frame OS: 

U 4 S U
4 S G GR R R = R = I⋅ ⋅  (2.81) 

4 S 4
S G UR R = R I⋅ ⋅  (2.82) 

4 4 G
S U SR = R I R⋅ ⋅  (2.83) 

4 4 G
S U SR = R R⋅  (2.84)
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Chapter Three 

3. Computational Dynamics 

The approach which thesis will recommend and base in dynamic 

calculations for computing the equation of motion is Walker and Orin [61, 62] 

application “recursive Newton-Euler formulation”; because of its explicit 

notations and less execution time.   They formulated the equations of motion 

in explicit form in comparison with others; simply it will yield a set of recursive 

equations, which can be applied to the links sequentially to compute the 

generalized forces referenced in their own coordinates in a short period of time 

and in on-line control. 

 

3.1. Dynamic equations of motion 

The second order nonlinear system equations of motion for the 

manipulator, with n joints and n+1 links, are generated generally from inertia, 

friction, Coriolis and Centrifugal, and gravity as shown in equation 3.1. 

J(q)q+ Cq+ F(q) + G(q) = Q&& & &  (3.1) 
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Where,  

q n × 1 vector of generalized joint coordinates, 

q&  n × 1 vector of joint velocities, 

q&&  n × 1 vector of joint accelerations, 

J(q)  n × 4 symmetric joint space inertia matrix, or manipulator inertia 

tensor, 

          C n × 4 viscous friction matrix, 

F(q)&  n × 1 vector defining Coriolis and Centrifugal forces, 

G(q)  n × 1 vector defining the gravity terms, 

Q  n × 1 vector defining the input generalized forces. 

 

 The manipulator joint space inertia and gravitational force are dependent 

on the manipulator configurations, q, So that they are considered as function of 

variable joints. The Coriolis and Centrifugal forces are considered as functions 

of joint velocity, q&  [49]. 

  

 The input generalized forces Qi are forces and moments on the joint i 

exerted by the actuator and by consequences of normal force, friction surface, 

and frictional moments exerted by surface on wheel end-effector.  
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3.2. Output generalized coordinates 

 The environmental inputs acting on the manipulator system are 

represented in forces and torques exerted on an end-effectors. The outputs of 

the system are represented in link’s positions, velocities, and accelerations. In 

other words, the forces and torques cause the accelerations and velocities, 

irrespective of linear or angular forms.  

 

Dynamics conduct two problems: forward dynamics recursion and 

backward dynamics recursion. The forward dynamics studies the trajectory of 

end-effectors with regard to the forces and torques that intuitively cause the 

motion. The inverse dynamic computes the forces and torques required to 

cause motion. See Figure 3.1.  

 

 

 

Figure  3.1. Dynamics propagations 

 

Figure 3.2 shows link i is connected to its two adjacent links; i.e. link i-1 

by joint i and also link i+1 by joint i+1. As well as, it shows the force and 

Backward 
Recursion

Forward 
RecursionForces 

Torques 
Velocities 

Accelerations 



 

 

97

moment (Fi and Ti) which act directly on end-terminal of link i by link i-1; and 

force and moment (Fi+1 and Ti+1) which act directly on another end-terminal of 

link i+1 by link i. Furthermore, the inertia force and moment (fi , iτ ) act 

directly on the center of mass of link i.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure  3.2. Recursive Newton-Euler Formulation notations on the base of the standard of 
the DH convention. 
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Moreover, Figure 3.2 also shows that the rover motion is referred with 

respect to the universal frame OU (xU, yU, zU). In other words, the coordinate 

frames and equations of motion of each link are expressed to the universal 

frame. The universal frame is chosen at the center of platform forming yU-zU 

horizontal plane, which is parallel to ground plane; and xU axis is normal to the 

ground plane directed upward. The coordinates frames are assigned at joints by 

utilizing from DH convention as explained in Chapter 2. 

3.3. Newton-Euler Recursive Relations 

The computations for determining the equations of motion will be 

complicated if the calculations are considered with respect to the fixed base 

frame [55], because the inertia matrix Ii depends on the orientation of link i. 

The efficient solution is to consider the dynamic and kinematics of each link 

expressed to its own coordinates frame [49]. Therefore, the equation of motion 

of each link is expressed to its own coordinate frame instead of making it 

expressed to the base frame following the notations made by Walker and Orin 

[61], See Appendix D. The basic idea behind the Newton Euler recursive 

formulation is broken down into two steps, i.e. forward and backward 

recursion. 
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3.3.1. Forward recursion  
 

This approach transforms the output generalized velocities and 

accelerations from the universal frame to the end-effector frame, link by link in 

iterative techniques, using the relationships of moving coordinate systems [49].  

 

The generalized coordinates (links positions, velocities, and 

accelerations) starting from universal frame OU and ending at end-effector O4 

frame can respectively and briefly be symbolized 

[ ]
[ ]

T

i 1 T
i 1

, i U
q

0 0 θ , 0 i n 1

ψ φ θ
+

+

⎧ =⎪= ⎨
≤ ≤ −⎪⎩

 (3.2) 

T

i 1 T

i 1

, i U
q

0 0 θ ,0 i n 1

ψ φ θ
+

+

⎧⎡ ⎤ =⎪⎣ ⎦= ⎨
⎡ ⎤⎪ ≤ ≤ −⎣ ⎦⎩

& &&
&

&
 (3.3) 

T

i 1 T

i 1

,i U
q

0 0 θ ,0 i n 1

ψ φ θ
+

+

⎧⎡ ⎤ =⎪⎣ ⎦= ⎨
⎡ ⎤ ≤ ≤ −⎪⎣ ⎦⎩

&& &&&&
&&

&&
 (3.4) 

 

For i = U, q0 describes the platform orientation with respect to universal 

frame. The platform of the rover is not bolted on any stationary point 

anymore, and its attitude is under the influence of the ground heights and the 

configurations of the four legged manipulators. As explained in chapter 1, the 
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attitude angles of the platform are evaluated with respect to the universal 

frame, i.e. roll (φ ), pitch (θ ), and yaw (ψ ) angles respectively rotate about yU, 

zU, and xU axes. These attitude angles are forming 3×1 vectors filled up with 

the generalized position, velocity, and acceleration coordinates of the first 

iterative step, respectively, as follow    

[ ]T

0q ψ φ θ=  (3.5) 

T

0q ψ φ θ⎡ ⎤= ⎣ ⎦
& && &  (3.6) 

and, 

T

0q ψ φ θ⎡ ⎤= ⎣ ⎦
&& &&&& &&  (3.7) 

 

The homogeneous transformation matrix of base frame O0 with respect 

to universal frame OU is 

U
0

c c c s c s s c s s s c

s c c c s

s c s s c c s s s s c c

R

φ θ φ θ ψ φ ψ φ θ ψ φ ψ

θ θ ψ θ ψ

φ θ φ θ ψ φ ψ φ θ ψ φ ψ

− + +

−

− + − +

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.8) 

 

And the homogeneous matrix of the universal frame OU with respect to 

the base frame O0 is given as the inverse of the above matrix 
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0
U

c c s s c

c s c s s c c s s c c s

c s s s c c s s s s c c
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φ θ θ φ θ
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 (3.9) 

 

According to initial values of the system, the angular velocity and 

acceleration of universal frame OU with respect to base frame O0 expressed in 

universal frame itself can be, respectively, given as 

( ) ( ) ( )
U U U

T
U U U U
U U U Ux y z

ω ω ω ω⎡ ⎤= ⎣ ⎦  (3.10) 

and, 

( ) ( ) ( )
U U U

T
U U U U
U U U Ux y z

ω ω ω ω⎡ ⎤= ⎣ ⎦& & & &  (3.11) 

 

Moreover, the linear velocity and acceleration of universal frame OU with 

respect to base frame O0 expressed in universal frame itself can be, respectively, 

given as 

T
U U 4 4R 4 4L
U 0

a θ a θv R 0 02
⎡ ⎤+

= ⋅ ⎢ ⎥
⎣ ⎦

& &
 (3.12) 

and,  

[ ]
T

TU U 4 4R 4 4L
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⎣ ⎦
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g is a gravity acceleration pointing downward of xU-axis, and its 

magnitude is equal to 9.81 and 3.63 m/s2 according to sea level of the earth and 

Mars surface. U
Uv&  and U

Uv&  vectors are treated in projection onto inertial 

coordinate system referenced to the universal frame OU.  

 

The position vector from the universal frame OU to base frame O0 

expressed in base frame is  

[ ]T0
0 000r =  (3.14) 

 

Following the computational algorithm as in Appendix C, The angular 

velocity propagation for the base link when i = U 
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⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎡ ⎤⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

−
− + + ⋅

+ − − +

= +

⎡ ⎤
⎢ ⎥= +
⎢ ⎥
⎣ ⎦

&

&

&

&

 (3.15) 

The angular acceleration propagation for the base frame when i = U is 

( )0 0 U U
0 U U 0 U 0

U U
U U

ω R ω q ω q

ω ω
c c s s c

c s c s s c c s s c c s
c s s s c c s s s s c c

φ θ θ φ θ ψ ψ
φ θ ψ φ ψ θ ψ φ θ ψ φ ψ φ φ
φ θ ψ φ ψ θ ψ φ θ ψ φ ψ θ θ

−
− + + ⋅ + + ×

+ − − +

= + + ×

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

&& &

&& &

& & && &

&
 (3.16) 
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The linear acceleration propagation for the base link when i = U is 

( )0 00 0 0 0 0 U
0 0 0 0 U U0 0

0 0 0 4R 4L
0 0 0

0 0
0 0
0 0

g
rθ rθω 2

0

v ω r ω ω r R v

ω ω
φ θ θ φ θ

φ θ ψ φ ψ θ ψ φ θ ψ φ ψ
φ θ ψ φ ψ θ ψ φ θ ψ φ ψ

−
+ + − + +

+ − − +

−⎡ ⎤
⎢ ⎥⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥× ⋅

⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎢ ⎥

⎣ ⎦

= × + × × +

= × ×
&& &&

&& &

&
c c s s c

c s c s s c c s s c c s
c s s s c c s s s s c c

(3.17) 

The velocity and acceleration of the platform center of mass, when i = 0, 

are computed respectively as follows: 

0 0 0 0
c,0 0 c,0 0

0 0
0 0

v ω r v

0
ω 0 v

0

= × +

⎡ ⎤
⎢ ⎥= × +⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.18) 

and, 

( )0 0 0 0 0 0 0
c,0 0 c,0 0 0 c,0 0

0 0 0 0
0 0 0 0

v ω r ω ω r v

0 0
ω 0 ω ω 0 v

0 0

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= × + × × +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.19) 

 

Once the velocities and accelerations of the platform center of mass are 

computed, the inertia force and moment acting on the platform center of mass 

can be computed. Assuming the viscous damping friction is negligible, the total 
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external force acting on each link center of mass is given by the Newton’s 

second law, and whilst the moment acting on each link center of mass is given 

by Euler’s equation. Newton-Euler formulation for the platform center of mass 

can be presented as: 

0 0
0 0 c , 0f m v= &  (3.20) 

and, 

( )00 0 0
0 0 0 0 0 0τ I ω ω I ω= + ×&  (3.21) 

 

For 0≤ i ≤n-1, qi+1 describes the motion of the manipulator starting 

from link 1 ending at link 4. n represents the number of joints of the 

manipulator. Our mobile robot employs four revolute joints for each 

manipulator; no any prismatic joint is employed. Thus, the notations of output 

generalized position coordinates will match the joint angles. Each entry inside 

qi+1 is composed of a 3×1 vector 

[ ]
[ ]
[ ]
[ ]T44

T
33

T
22

T
11

θ00q

θ00q

θ00q

θ00q

=

=

=

=

 (3.22) 
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As well as, for 0≤ i ≤3, the generalized joint velocities and joint 

accelerations are, respectively, as shown bellow: 

[ ]T1i1i θ00q ++ = &&  (3.23) 

[ ]T1i1i θ00q ++ = &&&&  (3.24) 

 

Now completing the algorithm as shown in Appendix C and D, The 

angular velocity propagation for link 1 when i = 0 

1 1 0
1 0 0 1

1 1
0
0

1 1 1

ω R ω q

C S 0 0
0 0 1 ω 0
S C 0 θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− ⋅ +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠

= +

=

&

&

 (3.25) 

The angular velocity propagation for link 2 when i = 1 

2 2 1
2 1 1 2

2 2
1
1

2 2 2

C S 0 0
0 0 1 ω 0
S C 0 θ

ω R ω q⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅ +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠

= +

&

&

 (3.26) 

The angular velocity propagation for link 3 when i = 2 

( )3 3 2
3 2 2 3

3 3
2

3 3 2

3

ω R ω q

C S 0 0
S C 0 ω 0
0 0 1 θ

= +

− − ⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= − ⋅ +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&

&

 (3.27) 
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The angular velocity propagation for link 4 when i = 3 

( )4 4 3
4 3 3 4

4 4
3

4 4 3

4

ω R ω q

C S 0 0
-S C 0 ω 0
0 0 1 θ

= +

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅ +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&

&

 (3.28) 

 

Now, the angular accelerations propagation starting from link 1 and 

ending at end effector link can be computed using the formula  

( )i 1 i 1 i i
i 1 i i i 1 i i 1ω R ω q ω q+ +
+ + += + + ×& & && &  (3.29) 

 

The angular acceleration propagation for link 1 when i = 0 

( )1 1 0 0
1 0 0 1 0 1

1 1
0 0
0 0

1 1 1 1

ω R ω q ω q

C S 0 0 0
0 0 1 ω 0 ω 0
S C 0 θ θ

= + + ×

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + ×⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

& & && &

&

&& &

  (3.30) 

The angular acceleration propagation for link 2 when i = 1 

( )2 2 1 1
2 1 1 2 1 2

2 2
1 1
1 1

2 2 2 2

C S 0 0 0
0 0 1 ω 0 0
S C 0 θ θ

ω R ω q ω q

ω

+ + ×

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + ×⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

=

&

&& &

& & && &

  (3.31) 

The angular acceleration propagation for link 3 when i = 2 
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( )3 3 2 2
3 2 2 3 2 3

3 3
2 2

3 3 2 2

3 3

ω R ω q ω q

C S 0 0 0
S C 0 ω 0 ω 0
0 0 1 θ θ

+ + ×

⎛ ⎞− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⋅ + + ×⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

=

=

& & && &

&

&& &

 (3.32) 

The angular acceleration propagation for link 4 when i = 3 

( )4 4 3 3
4 3 3 4 3 4

4 4
3 3

4 4 3 3

4 4

ω R ω q ω q

C S 0 0 0
-S C 0 ω 0 ω 0
0 0 1 θ θ

+ + ×

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ + + ×⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

=& & && &

&

&& &

 (3.33) 

 

And now, the linear acceleration propagations starting from link 1 to link 

4 are computed by following this algorithm  

( )i 1 i 1 i 1 i 1 i 1 i 1 i 1 i
i 1 i 1 i 1 i 1 i 1 i 1 i iv ω r ω ω r R v+ + + + + + +
+ + + + + += × + × × +&& &  (3.34) 

 

The linear acceleration propagation for link 1 when i = 0 is 

( )1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 0

1 1
1 1 1 0
1 1 1 1 1 0

1 1

v ω r ω ω r R v

0 0 C S 0
ω d ω ω d 0 0 1 v

0 0 S C 0

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × − + × × − + − ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.35) 

The linear acceleration propagation for link 2 when i = 1 is 
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( )2 22 2 2 2 2 1
2 2 2 2 1 12 2

2 2
2 2 2 1
2 2 2 1

2 2

ω R v

0 0 C S 0
ω 0 ω ω 0 0 0 1

0 0 S C 0

v r ω ω r

v
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × + × × +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

= × + × × +

⋅

& &

&

&

&

 (3.36) 

The linear acceleration propagation for link 3 when i = 2 is 

( )3 33 3 3 3 3 2
3 3 3 3 2 23 3

3 3 3 3
3 3 3 2
3 3 3 3 3 2

a a C S 0
0 0 S C 0
0 0 0 0 1

v ω r ω ω r R v

ω ω ω v
⎛ ⎞ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × + × × + − ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

= × + × × +&& &

& &

 (3.37) 

The linear acceleration propagation for link 4 when i = 3 is 

( )4 4 4 4 4 4 4 3
4 4 4 4 4 4 3 3

4 4 4 4
4 4 4 3
4 4 4 4 4 3

v ω r ω ω r R v

a a C S 0
0 0 -S C 0
0 0 0 0 1

ω ω ω v

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × + × × + ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.38) 

 

The velocity and acceleration of the center of mass of link i, starting 

from link 1 and ending at link 4, can be computed respectively as follows: 

( ) 1i
1i

1i
1i,c

1i
1i

1i
1i

1i
1i,c

1i
1i

1i
1i,c vrωωrωv +

+
+
+

+
+

+
+

+
+

+
+

+
+ +××+×= &&&  (3.39) 

 

The linear acceleration of center of mass of link 1 when i = 0 is 
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( )1 1 1 1 1 1 1
c,1 1 c,1 1 1 c,1 1

1 1 1 11 1
1 1 1 1

v ω r ω ω r v

0 0
d dω ω ω v2 2
0 0

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥= × + × × +
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.40) 

The linear acceleration of center of mass of link 2 when i = 1 is 

( )2 2 2 2 2 2 2
c,2 2 c,2 2 2 c,2 2

2 2 2 2
2 2 2 2

v ω r ω ω r v

0 0
ω 0 ω ω 0 v

0 0

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= × + × × +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.41) 

The linear acceleration of center of mass of link 3 when i = 2 is 

( )3 3 3 3 3 3 3
c,3 3 c,3 3 3 c,3 3

3 3

3 3 3 3
3 3 3 3

v ω r ω ω r v

a a
2 2

ω 0 ω ω 0 v
0 0

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤− −⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥= × + × × +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.42) 

The linear acceleration of center of mass of link 4 when i = 3 is 

( )4 4 4 4 4 4 4
c,4 4 c,4 4 4 c,4 4

4 4
4 4 4 4
4 4 4 4

v ω r ω ω r v

a a
ω 0 ω ω 0 v

0 0

= × + × × +

⎛ ⎞− −⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= × + × × +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.43) 

Starting from link 1 and ending at link 4, inertia force i
if  acting on the 

center of mass of link i expressed in the frame Oi is given by 
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1i
1i,c1i

1i
1i vmf +

++
+
+ = &  (3.44) 

Inertia force acting on the center of mass of link 1 when i = 0 is 

1
1,c1

1
1 vmf &=  (3.45) 

Inertia force acting on the center of mass of link 2 when i = 1 is 

2
2,c2

2
2 vmf &=  (3.46) 

Inertia force acting on the center of mass of link 3 when i = 2 is 

3
3,c3

3
3 vmf &=  (3.47) 

Inertia force acting on the center of mass of link 4 when i = 3 is 

4
4,c4

4
4 vmf &=  (3.48) 

 

Starting from link 1 and ending at link 4, inertia torques acting on the 

center of masses of link i expressed in the frame Oi is given by are given by 

following this algorithm: 

( )1i
1i1i

1i
1i

1i
1i1i

1i
1i ωIωωIτ +

++
+
+

+
++

+
+ ×+= &  (3.49) 

 

Inertia torque acting on the center of mass of link 1 when i = 0 is 
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( )

( ) ( )

11 1 1
1 1 1 1 1 1

22
11 11 1 1 1

1 1 1

I ω I

1 0 0 1 0 0
m dm d

0 0 0 0 0 01212
0 0 1 0 0 1

τ ω ω

ω ω ω
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

= + ×

= + ×
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

&

&
 (3.50) 

Inertia torque acting on the center of mass of link 2 when i = 1 is 

( )22 2 2
2 2 2 2 2 2

22 2
2 2 2

0 0 0
× 0 0 0

0 0 0

τ I ω ω I ω

0 0 0
0 0 0 ω ω ω
0 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

= + ×

= + ×
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

&

&
 (3.51) 

Inertia force acting on the center of mass of link 3 when i = 2 is 

( )

( ) ( )

33 3 3
3 3 3 3 3 3

22
33 33 3 3 3

3 3 3

0 0 0 0 0 0
m am a

0 1 0 0 1 01212
0 0 1 0 0 1

τ I ω ω I ω

ω ω ω
⎡ ⎤
⎢ ⎥ ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

= + ×

= + ×
⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

&

&
 (3.52) 

Inertia force acting on the center of mass of link 4 when i = 3 is 

( )44 4 4
4 4 4 4 4 4τ I ω ω I ω= + ×&  (3.53) 
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3.3.2. Backward recursion 

Inverse dynamics approach computes the forces and torques recursively 

from link 4 to link 1. After computing the inertia forces and moments exerted 

on the center of masses of links, backward computational procedures can be 

followed by evaluating one a link at a time starting from the end-effector frame 

and ending at the base frame as shown in recursive form:  

i i i 1 i
i i 1 i 1 iF R F f+

+ += +  (3.54) 

( )( ) ( )i i i 1 i 1 i i 1 i i i i i
i i 1 i 1 i i i 1 i i c,i i iT R T R r F R r r f τ+ + +

+ + += + × + + × +  (3.55) 

S
SF  and S

ST  are external force and moment exerted on the end-effector 

link in frame O4 (x4, y4, z4). These can be defined in 3×1 vector as 

[ ]TS
S n fF = F F 0−   (3.56) 

[ ]TS
ST = 0 0 0  (3.57) 

 

The force exerted on link 4 by link 3 when i = 4 is  

4 4 S 4
4 S S 4F = R F + f  

    
n

4 G 4
U S f 4

F
= R R × F f

0

⎡ ⎤
⎢ ⎥⋅ − +⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.58) 
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The force exerted on link 3 by link 2 is 

3 3 4 3
3 4 4 3

4 4
4 3

4 4 4 3

F R F f

C S 0
S C 0 F f
0 0 1

= +

−⎡ ⎤
⎢ ⎥= ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.59) 

The force exerted on link 2 by link 1 is 

2 2 3 2
2 3 3 2

3 3
3 2

3 3 3 2

F R F f

C S 0
S C 0 F f
0 0 1

= +

−⎡ ⎤
⎢ ⎥= − − ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.60) 

The force exerted on link 1 by link 0 is 

1 1 2 1
1 2 2 1

2 2
2 1

2 2 2 1

F R F f

C 0 S
S 0 C F f
0 1 0

= +

⎡ ⎤
⎢ ⎥= − ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.61) 

The force exerted on link 0  

0 0 1 0
0 1 1 0

1 1
1 0

1 1 1 0

C 0 S
S 0 C
0 1 0

F R F f

F f
−⎡ ⎤

⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

= +

= +
 (3.62) 

The force exerted on link 0 can be transformed into universal frame OU  
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U U 0
0 0 0

0
0

F R F

F
c c c s c s s c s s s c

s c c c s
s c s s c c s s s s c c

φ θ φ θ ψ φ ψ φ θ ψ φ ψ
θ θ ψ θ ψ
φ θ φ θ ψ φ ψ φ θ ψ φ ψ

− + +
− ⋅

− + − +

=

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

 (3.63) 

 

The moments exerted on link i by link i-1 can be computed by following 

this algorithm 

( ) i
i

i
i

i
i,c

i
i]

1i
1i

i
i

1i
i

1i
1i

i
1i

i
i τf)r(rF)r(RTRT +×++×+= +

+
++

++  (3.64) 

The moments exerted on link 4 by link 3 when i = 4 is  

( )S S 4 S4 4 4 4 4 4
4 S 4 c,4 4 4S 4 4 S

4 n 4 4
4 4 4 4
S S f 4 4

0 a F a a
0 0 F 0 0 f τ
0 0 0 0 0

T R T (R r ) F (r r ) f τ

R R
⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ + ⋅ × + + × +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

= + × + + × +

=
 (3.65) 

The moment exerted on link 3 by link 2 when i = 3 is 

( )( )3 3 4 4 3 4 3 3 3 3
3 4 4 3 3 4 3 c,3 3 3

4 4 4 4 3 3 3
4 4 3 3

4 4 4 4 4 4 3 3

T R T R r F (r r ) f τ

C S 0 C S 0 a a 0.5a
S C 0 T S C 0 0 F 0 0 f τ
0 0 1 0 0 1 0 0 0

= + × + + × +

⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − ⋅ × + + × +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3.66) 

The moment exerted on link 2 by link 1 when i = 2 is 
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( )2 2 3 3 2 3 2 2 2 2
2 3 3 2 2 3 2 c,2 2 2

3 3 3 3
3 3 2 2

3 3 3 3 3 3 2 2

T R T (R r ) F (r r ) f τ

C S 0 C S 0 0 0 0
S C 0 T S C 0 0 F 0 0 f τ
0 0 1 0 0 1 0 0 0

= + × + + × +

⎛ ⎞⎛ ⎞ ⎛ ⎞− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − + − ⋅ × + + × +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3.67) 

The moment exerted on link 1 by link 0 when i = 1 is 

( )1 1 2 2 1 2 1 1 1 1
1 2 2 1 1 2 1 c,1 1 1

2 2 2 2
2 2 1 1

2 2 2 1 2 1 1 1 1

2 2

T R T (R r ) F (r r ) f τ

C 0 S C S 0 0 0 0
S 0 C T 0 0 1 d F d 0.5d f τ
0 1 0 S C 0 0 0 0

= + × + + × +

⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + ⋅ − × + − + × +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

(3.68) 

The moment exerted on link 0 when i = 0 is 

( )0 0 1 1 0 1 0 0 0 0
0 1 1 0 0 1 0 c,0 0 0

1 1 1 1
1 1 0 0

1 1 1 1 0 0

1 1

T R T (R r ) F (r r ) f τ

C 0 S C S 0 0 0 0
S 0 C T 0 0 1 0 F 0 0 f τ
0 1 0 S C 0 0 0 0

= + × + + × +

⎛ ⎞⎛ ⎞ ⎛ ⎞−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − ⋅ × + + × +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3.69) 

The moment exerted on link 0 can be transformed into universal frame OU  

U U 0
0 0 0

0
0

T R T

T
c c c s c s s c s s s c

s c c c s
s c s s c c s s s s c c

φ θ φ θ ψ φ ψ φ θ ψ φ ψ
θ θ ψ θ ψ
φ θ φ θ ψ φ ψ φ θ ψ φ ψ

− + +
− ⋅

− + − +

=

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

 (3.70) 

 

The forces and torque exerted by the actuator at joint i is 
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( )
( )

Ti i
i i+1 U

i Ti i
i i+1 U

F (R z );  
Q

T (R z );

⎧⎪= ⎨
⎪⎩

input force for prismatic link

input torque for rotational link
  (3.71) 

 

All joints used are revolute type, thus the input torque Qi at each joint is the 

sum of the projection of i
iT  onto zU (xU, yU, zU) about the zU axis  

( ) ( )Ti i
i i i+1 UQ = T R z  (3.72) 

 

The dynamic equation at joint 1 when i = 1 is given by 

( ) ( )

( )

T1 0
1 1 1 U

1 1
T1

1 1 1

Q T R z

C 0 -S 0
T S 0 C 0

0 -1 0 1

=

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (3.73) 

The dynamic equation at joint 2 when i = 2 is given by 

( ) ( )

( )

T2 1
2 2 2 U

2 2
T2

2 2 2

Q

C 0 S 0
S 0 C × 0
0 1 0 1

T R z

T

=

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (3.74) 

The dynamic equation of joint 3 when i = 3 is given by 
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( ) ( )

( )

T3 2
3 3 3 U

3 3
T3

3 3 3

Q R z

C S 0 0
S C 0 0
0 0 1 1

T

T

=

⎛ ⎞−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= − − ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (3.75) 

Finally, The dynamic equation at joint 4 when i = 4 is given by 

( ) ( )

( )

T4 3
4 4 4 U

4 4
T4

4 4 4

Q

C S 0 0
S C 0 0
0 0 1 1

T R z

T

=

⎛ ⎞−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (3.76) 



 

 

118

 

Chapter Four 

4. System forces and moments 

The system forces and moments are transformed to platform universal 

frame from outermost link till the innermost, link by link. The system forces 

are generated from the system weight of rover, inertial forces on the center of 

mass of links, and direct contacts between wheels and ground surface 

expressed as the normal force, and frictional force.  

 

 The longitudinal and lateral forces exerted on wheel are relatively small 

values and even avoided here in this work. Furthermore, the moments between 

wheel and surface are also negligible.  

 

4.1.1. System weight 

Benefiting from Newton-Euler recursive method, the total weight of 

rover will be evaluated at the platform universal frame. This is resulted from 

transforming the gravity force of each link starting from wheel link to platform 
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link, link by link. In other meaning, the system weight is defined as a 

gravitational force vector of a system mass constant times the acceleration of 

gravity that points downward vertically in xU of the platform universal frame 

OU.  

[ ]T00mgweightSystem −=  (4.1) 

 

Where, m is the system mass constant of rover links and is equal to 

12kg, g is the gravitational acceleration produced in a body due to the Mars' 

gravitational attraction; Its SI unit is m/s² and its values on the surfaces of the 

earth and Mars, respectively, are 9.8m/s² and 3.63 m/s². 

 

The vertical projection of system weight from center of mass will be 

distributed among the contact wheels on the base of joint configurations, 

ground geometries, and rover attitude. The amounts of distributed weights on 

wheels are simply defined as wheel pressures on ground contacts. In the case of 

symmetric configurations and flat surface, the projection of center of mass will 

be at the middle area of the support polygon, so the system weight will be 

distributed equally among these wheels. However, if the changing occurs in 

joint configurations and ground geometry during the travel; the position of 
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vertical project of center of mass will change and the amounts of wheeled 

pressures on ground will already change. 

 

 Wheel universal frame OW is assigned at each contact point in order to 

represent the part of distributed weight on that wheel. OU and OW are 

contingent. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

0
0
F

F
W

W
W  (4.2) 

 

4.1.2. Normal force 

The normal force is inspired from Newton’s third law which states that 

for each action force there is reaction force with the same magnitude and 

opposite direction. The contact always generates reaction force acting 

perpendicular to the contact surface expressed in surface frame OS. 

 

Whenever any wheel of the rover are in contact with ground, the 

gravitational or weight force acting on wheel will apply to the ground, so the 

ground will react on the wheel with normal force. The magnitude of the normal 

force is equal weight force component applied in xS axis. The direction of the 
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normal force is instantaneously perpendicular to the surface in xS axis. In the 

case of the flat surface, the normal force is coplanar to the positive axis xW 

direction. However, if the wheels choose their footholds on inclined or smooth 

uneven surface, the normal force will make angle relatively to wheel universal 

frame OW.  

 

In static stabilizing condition, the number of supporting wheels on 

ground can vary between 3 and 4 for a quadruped robot. In the case of 

symmetric configurations and flat surface, the weight force acting by 

supporting wheel on the ground is equal the weight of system rover divided by 

the number of supporting wheels 

nc
mgFn =  (4.3) 

 

Where, Fn is the static normal force acting from the ground on the 

supporting wheel. mg is the weight of the rover acing on ground and directed 

coplanar with respect universal frame. nc is the number of wheels which are in 

contact with the ground. However as shown in Figure 4.1, in the case of non-
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symmetric rover and non-uniform surface geometries the specific equation 4.3 

is totally not capable for evaluating the normal forces.  

 

 

 

 

 

 

Figure  4.1. Normal forces acting on wheels perpendicular to surface. 

 

This rover dealt with unknown reactions for four, three, and two legs; 

the system of four legs has three equations and four unknown so it is 

considered as indeterminate system of equations, while the system of three legs 

has three equations and three unknowns so it is considered determinate system 

of equation Furthermore, the two legs system has two variables and provided 

with two equations, thus this is considered determinate system of equation. 

 

 

FnSLF 
FnSRR

FnSRF 

OU

zU

xU

FnS4L
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4.1.3. Frictional force 

In general, the friction is resulted from the pressing two surfaces with 

each other, and generates deformation, heat, as well as frictional force in the 

opposite direction of motion. The types of frictions are rolling, sliding slipping 

frictions. In any way, in pure rolling motion there is no sliding or slipping; and 

rolling on solid surface yields no rolling friction at all. The direction of motion 

is always perpendicular to the normal force and tangent to surface. The rolling 

friction occurs between wheels and contact area surface. Whereas rolling 

frictional force is a function of normal force acting from ground on wheel and 

coefficient of rolling friction. 

nf µFF =  (4.4) 

 

Where, Ff is the rolling frictional force occurred between the wheel and 

the soft terrain. µ is rolling coefficient friction between two surfaces. Fn is the 

normal force exerted on the wheel. However, rolling friction occurred when 

the rover is moving on soft terrain. Thus, the rolling coefficient of this work is 

equal zero because we assume solid surface.  
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4.1.4. Wheeled motor torque 

The motor exerts required amount of torque that enables wheel to grip 

with surface and propel it in tangent direction of the surface. The motor torque 

is equal the cross product of traction force and wheel radius. 

Tm = r × Ft (4.5) 

 

Where, Tm is the motor torque, and Ft is the traction force in the 

direction of tangential line of surface. The motor torque rotates about z3 axis in 

the direction of wheel rotation.  

 

Finally, the resultant of forces and moments exerted on wheel end-

effector are computed with respect to frame OS (xS, yS, zS) as shown in Figure 

4.2, and it can be obtained respectively in two 3 × 1 vectors. 

[ ]TS
S n fF F F 0= −  (4.6) 

[ ]TS
ST 0 0 0=  (4.7) 

 

Because the wheels are locomoted on solid surface as assumed, the 

rolling friction is negligible in this work. 
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Figure  4.2. External forces and moments exerted by ground on end-effector projected in 
frame O4. 

 

Where, 

Fn normal force perpendicular to contact surface and in xS axis 

direction. 

Ff frictional force tangential of contact surface in opposite direction 

of wheel linear motion in the direction of -yS axis. 

FW weight acing on center of wheel and directed downward in -xW 

axis of wheel universal frame OW. 

O4

z4

y4

x4

FW β

v 

Ff

Fn

Tm

O3

yS yWOS 

xS 

Ff

Fn 

OW

xW
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Tm motor moment in direction of wheel rotational motion about z3-

axis. 

β  Slope angle of inclined surface. 

 

The summation of all moments (resulted fro normal forces, inertial 

forces, gravity forces exerted on center of mass of links, and torques exerted on 

link) about the contact wheels are equal zero. Thus, this is the definition of 

balanced equation. 

 

Now for the four contact legs, the summation of all moments can be 

given as in equations 4.9, 4.15, 4.21, and 4.27 as shown respectively in:
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⎥
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 (4.8) 

The above equation can be abbreviated with notations and it provides for 

definition of the equation of balanced, 

nSRR 1 nSLF 2 nSLR 3 1F B F B F B M 0⋅ + ⋅ + ⋅ + =  (4.9) 

 

Where, 

[ ]TU U U
1 4RR 4RF SRRB (r r ) (R 1 µ 0 )= − × −  (4.10) 

[ ]TU U U
2 4LF 4RF SLFB (r r ) (R 1 µ 0 )= − × −  (4.11) 

[ ]TU U U
3 4LR 4RF SLRB (r r ) (R 1 µ 0 )= − × −  (4.12) 

and 

( )U U U i U i
1 c,i 4RF i i i i

i i
M (r r ) R f R τ= − × +∑ ∑  (4.13) 
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 (4.14) 

 

nSRF 1 nSLF 2 nSLR 3 2F C F C F C M 0⋅ + ⋅ + ⋅ + =  (4.15) 

 

Where, 

[ ]TU U U
1 4RF 4RR SRFC (r r ) (R 1 µ 0 )= − × −  (4.16) 

[ ]TU U U
2 4LF 4RR SLFC (r r ) (R 1 µ 0 )= − × −  (4.17) 

[ ]TU U U
3 4LR 4RR SLRC (r r ) (R 1 µ 0 )= − × −  (4.18) 

 

( )U U U i U i
2 c,i 4RR i i i i

i i
M (r r ) R f R τ= − × +∑ ∑  (4.19) 



 

 

129

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=++++

++++

++++

+×−+×−

+×−+×−

+×−+×−+×−

+×−+×−+×−

+×−+×−+×−

+×−+×−+×−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∑

0
0
0

τRτRτRτRτR

τRτRτRτR
τRτRτRτR

fR)r(rfR)r(r

fR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r
FR)r(rFR)r(rFR)r(r

0
0
0

M

R0
R0

U
R0

L1
L1

U
L1

L2
L2

U
L2

R1
R1

U
R1

R2
R2

U
R2

LR3
LR3

U
LR3

LR4
LR4

U
LR4

LF3
LF3

U
LF3

LF4
LF4

U
LF4

RR3
RR3

U
RR3

RR4
RR4

U
RR4

RF3
RF3

U
RF3

RF4
RF4

U
RF4

LR4
LR4

U
LR4

U
LF4

U
LRc,4

LR3
LR3

U
LR3

U
LF4

U
LRc,3

LF4
LF4

U
LF4

U
LF4

U
LFc,4

LF3
LF3

U
LF3

U
LF4

U
LFc,3

L2
L2

U
L2

U
LF4

U
Lc,2

L1
L1

U
L1

U
LF4

U
Lc,1

R0
R0

U
R0

U
LF4

U
Rc,0

R1
R1

U
R1

U
LF4

U
Rc,1

R2
R2

U
R2

U
LF4

U
Rc,2

RR3
RR3

U
RR3

U
LF4

U
RRc,3

RR4
RR4

U
RR4

U
LF4

U
RRc,4

RF3
RF3

U
RF3

U
LF4

U
RFc,3

RF4
RF4

U
RF4

U
LF4

U
RFc,4

SLR
SLR

U
SLR

U
LF4

U
LR4

SRR
SRR

U
SRR

U
LF4

U
RR4

SRF
SRF

U
SRF

U
LF4

U
RF4

LF4

 (4.20) 

 

nSRF 1 nSRR 2 nSLR 3 3F D F D F D M 0⋅ + ⋅ + ⋅ + =  (4.21) 

 

Where,  

[ ]TU U U
1 4RF 4LF SRFD (r r ) (R 1 µ 0 )= − × −  (4.22) 

[ ]TU U U
2 4RR 4LF SRRD (r r ) (R 1 µ 0 )= − × −  (4.23) 

[ ]TU U U
3 4LR 4LF SLRD (r r ) (R 1 µ 0 )= − × −  (4.24) 

 

( ) ∑∑ +×−=
i

i
i

U
i

i

i
i

U
i

U
LF4

U
ic,3 τRfR)r(rM  (4.25) 
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 (4.26) 

 

nSRF 1 nSRR 2 nSLF 3 4F E F E F E M 0⋅ + ⋅ + ⋅ + =  (4.27) 

 

Where,  

[ ]TU U U
1 4RF 4LR SRFE (r r ) (R 1 µ 0 )= − × −  (4.28) 

[ ]TU U U
2 4RR 4LR SRRE (r r ) (R 1 µ 0 )= − × −  (4.29) 

[ ]TU U U
3 4LF 4LR SLFE (r r ) (R 1 µ 0 )= − × −  (4.30) 

 

( ) ∑∑ +×−=
i

i
i

U
i

i

i
i

U
i

U
LR4

U
ic,4 τRfR)r(rM  (4.31) 
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Normal Force Algorithm: 

% Right legs and left legs are in contact with ground, 

( ) ( )if RF & & RR & & LF & & LR• • • •a a a a  

 ( ) ( )if ~ 0 & & 0Roll Pitch= ==   

          3
nSRF

1 2

M (2)F =
D (2) + D (2)

−  (4.32) 

         nSRR nSRFF = F  (4.33) 

          1
nSLF

2 3

M (2)F =
B (2) + B (2)

−  (4.34) 

          nSLR nSLFF = F  (4.35) 

( ) ( )if 0& & ~ 0 || 0& & 0Roll Pitch Roll Pitch== = == ==  

          2
nSRF

1 2

M (3)F =
C (3) + C (3)
−  (4.36) 

         1
nSRR

1 3

M (3)F =
B (3) + B (3)
−  (4.37) 

          nSLF nSRFF = F  (4.38) 

          nSLR nSRRF = F  (4.39) 

End 

End 
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( ) ( )if RF & & RR & & LF & & LR• •a a a o a o  

% Right legs are in contact with ground and left legs are without, 

1

1

0 B (3)
Coefficient =

C (3) 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (4.40) 

[ ]1 2b = M (3) M (3)− −  (4.41) 

x = inv(Coefficient)*b  (4.42) 

          nSRFF = x(1)  (4.43) 

nSRRF = x(2)  (4.44) 

nSLFF = 0  (4.45) 

nSLRF = 0  (4.46) 

( ) ( )elseif RF & & RR & & LF & & LR• •a o a o a a  

%Left legs are in contact with ground and right legs without contact 

3

3

0 D (3)
Coefficient =

E (3) 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (4.47) 

[ ]3 4b = M (3) M (3)− −  (4.48) 

x = inv(Coefficient)*b  (4.49) 

          nSRFF = 0  (4.50) 

nSRRF = 0  (4.51) 

nSLFF = x(1)  (4.52) 
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nSLRF = x(2)  (4.53) 

End  

( ) ( ) ( )( )if RF & & RR & & LF & & LR || LF & & LR• • • •a a a a o a o a  

% Right legs are in contact with ground and either left front or rear leg is without, 

1 2 3

1 2 3

1 2 3

1 2 3 4

0 B (2) B (2) B (2)
0 B (3) B (3) B (3)

Coefficient =
C (3) 0 C (3) C (3)
H (1) H (1) H (1) H (1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4.54) 

[ ]T1 1 2b = M (2) M (3) M (3) System_Force_U(1)− − − −  (4.55) 

x = inv(Coefficient)*b  (4.56) 

          nSRFF = x(1)  (4.57) 

nSRRF = x(2)  (4.58) 

nSLFF = x(3)  (4.59) 

nSLRF = x(4)  (4.60) 

( ) ( )( ) ( )elseif RF & & RR || RF & & RR & & LF & & LR• • • •a a o a o a a a  

%Either right font or rear leg is without contact and left legs are in contact, 

1 2 3

1 2 3

1 2 3

1 2 3 4

D (2) D (2) 0 D (2)
D (3) D (3) 0 D (3)

Coefficient =
E (3) E (3) E (3) 0
H (1) H (1) H (1) H (1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4.61) 

[ ]T3 3 4b = M (2) M (3) M (3) System_Force_U(1)− − − −  (4.62) 
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x = inv(Coefficient)*b  (4.63) 

          nSRFF = x(1)  (4.64) 

nSRRF = x(2)  (4.65) 

nSLFF = x(3)  (4.66) 

nSLRF = x(4)  (4.67) 

End 
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4.1.5. Constraints 

The normal force is positive, if the wheel remains in contact with 

ground. Otherwise, it is equal zero. 

nF > 0  if leg •a ; means that the wheel is in contact with ground. 
 

nF 0=  if leg oa ; means that the wheel is not in contact with ground. 

 

During motion of rigid wheels on rigid surface, if motor exerts high 

torque, then wheel will slip and provide low speed. Thus the traction force 

must be less or equal the frictional force to make rigid wheels capable for 

gripping with rigid surface. 

m nF Fµ≤  (4.68) 
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Chapter Five 

5. Results and discussion 

This work concludes that the rover will be dynamically stable if it meets 

this condition: "The universal moment at platform resulted from gravity force,  

inertial forces and torques exerted on center of mass of each link, and normal 

forces exerted on end-effectors must not equal the critical moments". 

 

  The platform can be represented as a collection of effects of system 

normal forces, system weights, and system inertial, since the backward dynamic 

system propagates those forces and moments from outermost to innermost 

link by link starting from end-effector till the platform link. 

 

 The critical moment is the required moment to rotate the rover and lose 

one side’s connections with ground in order to rotate the rover about the 

opposite sides. The four critical moments about edges of contact points are 
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threshold limits evaluated by substituting in universal moment with zero 

normal forces for the opposite side as shown in Figure 5.1, 

  

 

 
 
 
 
 
 

 

Figure  5.1. Four critical moments 

 The left legs are substituted zero normal forces in balance equations 

4.14 and 4.8, respectively, in order to find the normals on the right critical 

contact line,  

2
nSR F

1

M (3)F = C (3)
−  (5.1) 

1
nRR

1

M (3)F = B (3)
−  (5.2) 

 

The critical moment required to turn the rover over the right side takes 

place when the left legs are uncontact with ground and the equations 5.1 and 

5.2 are substituted in equation F.8, we obtain 

OU

FnRR 

FnLR FnLF 

FnRF 

yU 
C,Rightτ

C,Leftτ

C,Rearτ
C,Frontτ

zU
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( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

U U SRF U U SRR
C,Right 4RF SRF SRF 4RR SRR SRR

U U 4RF U U 3RF U U 4RR U U 3RR
c,4RF 4RF 4RF c,3RF 3RF 3RF c,4RR 4RR 4RR c,3RR 3RR 3RR

U U 2R U U 1R U U 0R U U 1L
c,2R 2R 2R c,1R 1R 1R c,0R 0R 0R c,1L 1L 1L

τ = r × R F + r × R F

r R f r R f r R f r R f

r R f r R f r R f r R f r

+

× + × + × + × +

× + × + × + × + ( )
( ) ( ) ( ) ( )

U U 2L
c,2L 2L 2L

U U 3LF U U 4LF U U 3LR U U 4LR
c,3LF 3LF 3LF c,4LF 4LF 4LF c,3LR 3LR 3LR c,4LR 4LR 4LR

U 4RF U 3RF U 4RR U 3RR U 4LF U 3LF U 4LR U
4RF 4RF 3RF 3RF 4RR 4RR 3RR 3RR 4LF 4LF 3LF 3LF 4LR 4LR 3LR 3LR

R f

r R f r R f r R f r R f

R τ R τ R τ R τ R τ R τ R τ R τ

× +

× + × + × + × +

+ + + + + + + 3LR

U 2R U 1R U 2L U 1L U 0R
2R 2R 1R 1R 2L 2L 1L 1L 0R 0RR τ R τ R τ R τ R τ

+

+ + + +

(5.3) 

The rear legs are substituted zero normal forces in balance equations 

4.20 and 4.8, respectively, in order to find the normals on the front critical 

contact line, 

3
nSRF

1

M (2)F = D (2)
−  (5.4) 

1
nSLF

2

M (2)F = B (2)
−  (5.5) 

The critical moment required to turn the rover over the front side takes 

place when the rear legs are uncontact with ground and the equations 5.4 and 

5.5 are substituted in equation F.8, we obtain 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

U U SRF U U SLF
C,Front 4RF SRF SRF 4LF SLF SLF

U U 4RF U U 3RF U U 4RR U U 3RR
c,4RF 4RF 4RF c,3RF 3RF 3RF c,4RR 4RR 4RR c,3RR 3RR 3RR

U U 2R U U 1R U U 0R U U 1L
c,2R 2R 2R c,1R 1R 1R c,0R 0R 0R c,1L 1L 1L

τ = r × R F + r R F

r R f r R f r R f r R f

r R f r R f r R f r R f r

× +

× + × + × + × +

× + × + × + × + ( )
( ) ( ) ( ) ( )

U U 2L
c,2L 2L 2L

U U 3LF U U 4LF U U 3LR U U 4LR
c,3LF 3LF 3LF c,4LF 4LF 4LF c,3LR 3LR 3LR c,4LR 4LR 4LR

U 4RF U 3RF U 4RR U 3RR U 4LF U 3LF U 4LR U
4RF 4RF 3RF 3RF 4RR 4RR 3RR 3RR 4LF 4LF 3LF 3LF 4LR 4LR 3LR 3LR

R f

r R f r R f r R f r R f

R τ R τ R τ R τ R τ R τ R τ R τ

× +

× + × + × + × +

+ + + + + + + 3LR

U 2R U 1R U 2L U 1L U 0R
2R 2R 1R 1R 2L 2L 1L 1L 0R 0RR τ R τ R τ R τ R τ

+

+ + + +

(5.6) 



 

 

140

The right legs are substituted zero normal forces in balance equations 

4.26 and 4.20, respectively,  in order to find the normals on the left critical 

contact line, 

4
nSLF

3

M (3)F = E (3)
−  (5.7) 

3
nSLR

3

M (3)F = D (3)
−  (5.8) 

The critical moment required to turn the rover over the left side takes 

place when the right legs are uncontact with ground and the equations 5.7 and 

5.8 are substituted in equation F.8, we obtain 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

U U SLF U U SLR
C,Left 4LF SLF SLF 4LR SLR SLR

U U 4RF U U 3RF U U 4RR U U 3RR
c,4RF 4RF 4RF c,3RF 3RF 3RF c,4RR 4RR 4RR c,3RR 3RR 3RR

U U 2R U U 1R U U 0R U U 1L
c,2R 2R 2R c,1R 1R 1R c,0R 0R 0R c,1L 1L 1L c

τ = r R F r R F

r R f r R f r R f r R f

r R f r R f r R f r R f r

× + × +

× + × + × + × +

× + × + × + × + ( )
( ) ( ) ( ) ( )

U U 2L
,2L 2L 2L

U U 3LF U U 4LF U U 3LR U U 4LR
c,3LF 3LF 3LF c,4LF 4LF 4LF c,3LR 3LR 3LR c,4LR 4LR 4LR

U 4RF U 3RF U 4RR U 3RR U 4LF U 3LF U 4LR U 3
4RF 4RF 3RF 3RF 4RR 4RR 3RR 3RR 4LF 4LF 3LF 3LF 4LR 4LR 3LR 3LR

R f

r R f r R f r R f r R f

R τ R τ R τ R τ R τ R τ R τ R τ

× +

× + × + × + × +

+ + + + + + + LR

U 2R U 1R U 2L U 1L U 0R
2R 2R 1R 1R 2L 2L 1L 1L 0R 0RR τ R τ R τ R τ R τ

+

+ + + +

 (5.9) 

The front legs are substituted zero normal forces in balance equations 

4.26 and 4.14, respectively, in order to find the normals on the rear critical 

contact line, 

4
nSRR

2

M (2)F = E (2)
−  (5.10) 

2
nSLR

3

M (2)F = C (2)
−  (5.11) 
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The critical moment required to turn the rover over the rear side takes 

place when the front legs are uncontact with ground and the equations 5.10 and 

5.11 are substituted in equation F.8, we obtain 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

U U SRR U U SLR
C,Rear 4RR SRR SRR 4LR SLR SLR

U U 4RF U U 3RF U U 4RR U U 3RR
c,4RF 4RF 4RF c,3RF 3RF 3RF c,4RR 4RR 4RR c,3RR 3RR 3RR

U U 2R U U 1R U U 0R U U 1L
c,2R 2R 2R c,1R 1R 1R c,0R 0R 0R c,1L 1L 1L c

τ = r × R F r R F

r R f r R f r R f r R f

r R f r R f r R f r R f r

+ × +

× + × + × + × +

× + × + × + × + ( )
( ) ( ) ( ) ( )

U U 2L
,2L 2L 2L

U U 3LF U U 4LF U U 3LR U U 4LR
c,3LF 3LF 3LF c,4LF 4LF 4LF c,3LR 3LR 3LR c,4LR 4LR 4LR

U 4RF U 3RF U 4RR U 3RR U 4LF U 3LF U 4LR U 3
4RF 4RF 3RF 3RF 4RR 4RR 3RR 3RR 4LF 4LF 3LF 3LF 4LR 4LR 3LR 3LR

R f

r R f r R f r R f r R f

R τ R τ R τ R τ R τ R τ R τ R τ

× +

× + × + × + × +

+ + + + + + + LR

U 2R U 1R U 2L U 1L U 0R
2R 2R 1R 1R 2L 2L 1L 1L 0R 0RR τ R τ R τ R τ R τ

+

+ + + +

 

 

The on-line executions of set of manipulations and locomotions are 

presented here over various types of surface geometries; this chapter studies 

and analyzes the normal forces, platform attitude, inertial effects, gravity forces, 

and dynamic stability margin for different surface geometries, and variable 

inertial accelerations, movable rover configurations under the considerations of 

being symmetric or non-symmetric form. In the case of symmetric 

configuration, the rover attitude (roll, pitch, an yaw) harmonizes the surface 

geometries, otherwise the joint configurations importantly contribute in 

attitude calculations. This chapter covers important examples provided with 

tests required to integrate all factors with each others in algorithmic and 

computational manner to deeply study their influence on dynamic stability.  
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1. Wheels, RCJ, LCJ, RDJ, and LDJ motions on flat surface. 

This example studies the effect of acceleration of wheels and variable 

configuration of joints. The rover locomoted forward on a flat surface and 

subjected to three tests done in wheels accelerations 2, 4, and 5m/s2 as 

represented in black, green, and blue curves, respectively. In addition, the rover 

configurations of four manipulators are manipulated in symmetric manner as 

shown in table 5.1:  

Table  5.1. conf_1 → conf_2 

1Rθ  2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ  

conf_1 0 3
π - 3

π
3
π  0 3

π
3
π  - 3

π  

conf_2 0 0 - 4
π

4
π  0 0 4

π  - 4
π  

 
Moreover, the platform attitude (roll, pitch, and yaw) will be congruent 

with the flat surface as shown in Figure 5.2 
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Figure  5.2. Platform attitude. 
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Furthermore as being symmetric and forward locomotion, the normal 

forces exerted on the wheels are distributed in equal manner; the front legs 

share the same value; and rear legs as well, as shown in Figure 5.3. The effects 

of normal forces were significantly propagated from outermost link (wheels) 

into innermost links (platform).  
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Figure  5.3. Normal forces 

 
Figure 5.3 shows the front legs having the same vales, which increases in 

direct proportional to wheeled accelerations and shoulders’ angle, while the rear 

legs were decreasing with respect the mentioned factors, wheel accelerations 

4m/s2 made the rear legs with 0.5294 Newton as normal forces at time 200s, 
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and 5m/s2 made the rear legs without contact with ground at times 123 second. 

The loss of rear legs’ connections with ground endangers the situation and 

threatens the rover’s stability; because the rover will undergo to lateral tumbling 

about the front legs while the acceleration value was high. 

In Figure 5.4, shows six dash curves which are critical moments where 

the universal moment of platform (solid curves) must not touch the critical 

curves in order to keep the system stable; otherwise the rover will tumble losing 

its stability. The upper three dash curves indicate for critical moments required 

to tumble about the rear legs, and the lower three dash curves indicate for 

critical moments required to tumble the rover about the front legs. 

 

The solid curves were firstly relatively far from the rear critical curves 

when shoulders were open with 120° angle and conjunctional joints were 

manipulated with 60°, but they were coming approach to the front critical 

curves when shoulders joined with angle 90° and 0° conjunctional joints; solid 

black curve was far the dash black curve during the travel time, this indicates 

for the dynamic stable system and the four legs are in contact with ground. 

While solid green curve was trying to touch the dash green curve during time 

interval [160-200s]; this indicates for critical dynamical stability where the rear 
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preserved small pressure on surface. Finally, the solid blue curve touched the 

dash blue curve at time 123 second; this indicates for dynamic instability where 

the rear legs lost the contacts with ground. 
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Figure  5.4. Universal moments and critical moments about zU axis. 

 
In Figure 5.5, the universal moment about the yu-axis is fixed and zero 

for three acceleration values as shown in solid curves, but the right and left 

critical curves were coming approach when the shoulders were coming 

approach to each other, and the RCJ and LCJ were approaching to zero angle. 
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Figure  5.5. Universal moments and critical moments about yU axis. 

Since the rover was manipulated in symmetric manner in this case, the 

effects of torques exerted on RCJ, LCJ, RDJ, and LDJ are cancelled as a result 

for being moving in the same magnitudes and in opposite rotations with 

respect to universal frame. The only effects of joint torques are those exerted 

on wheels which propagated in serial form from outermost link (wheels) to 

innermost link (platform); link by link. See Table 5.2 and Figure 5.6.  

Table  5.2. Torques exerted on wheel. 

Accelerations  
in m/s2 

4RF
4RFτ  

(N.m) 

4RR
4RRτ  

(N.m) 
4LF
4LFτ  

(N.m) 
4LR
4LRτ  

(N.m) 
2 0.0338 0.0338 -0.0338 -0.0338 
4 0.0677 0.0677 -0.0677 -0.0677 
5 0.0846 0.0846 -0.0846 -0.0846 
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Figure  5.6. Propagated torques about (xU,yU,zU) axes. 

 
The gravity forces of link center of masses have no moment effect on 

the platform, because the rover attitude is congruent with the flat surface. See 

Figure 5.7.   
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Figure  5.7. Propagated moment of gravity forces about (xU,yU,zU) axes. 
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However, the propagated moments of the inertial forces of wheels have 

significant effects on platform as shown in Figure 5.8. 
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Figure  5.8. Propagated moment of inertial forces about (xU,yU,zU) axes. 

 
Finally, the normal forces exerted on wheels create moments about the 

universal frames as shown in Figure 5.9 
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Figure  5.9. Propagated moment of normal forces about (xU,yU,zU) axes.
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2. Wheels, RFDJ, and RRDJ motions on step flat-inclined surface. 

This example studies the effect of rover configurations on step flat-

inclined surface as shown in Figure 5.10; the right wheels locomoted on flat 

surface and left wheels locomoted on inclined surface with angle 22.5°. The 

rover locomoted forward and subjected to three tests done in RFDJ and RRDJ 

as represented in black, green, and blue curves with wheel acceleration 2 m/s2, 

respectively, and as shown in Table 5.3: 

 

 

 

 

 

Figure  5.10. Rover posture on step flat-inclined surface. 

 

Table  5.3. conf_0 → conf_0, conf_0 → conf_1, conf_0 → conf_2 

1Rθ  2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ  

conf_0 0 0 - 4
π

4
π  0 0 4

π  - 4
π  

conf_1 0 0 - 8
π

8
π  0 0 4

π  - 4
π  

conf_2 0 0 -18
π

18
π 0 0 4

π  - 4
π  
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In this example, the first test is fix symmetric configuration as shown in 

above table, but the configurations of four manipulators are manipulated in 

non-symmetric manner in test 2 and test 3 as a result of rotation of right 

shoulders (RDJ). The non-symmetric manner and the variance of elevations on 

right and left sides significantly influence in platform attitude where the whole 

rover undergoes under roll rotations as expressed in yU axis as shown in Figure 

5.11: 
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Figure  5.11. Platform attitude. 

 The calculations take the three contact legs into account as being non-

symmetric configurations. Therefore, this example assumes right rear legs 

without contact with surface.  
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Figure  5.12. Normal forces. 

Above Figure shows the blue curve of right front leg becoming without 

contact at times 118 second. It means that when the right shoulders were 

closing to each other making the right front leg without contact with surface, 

the rover rotated about single line delimited by the left legs. This process 

threatens the dynamic rover stability as shown in Figure 5.13; the solid blue 

curve touched the dash line at 118 second, thus the adopting of conf_2 (test 3) 

will lead to dynamic unstable system. The solid green curve was trying to 

approach from the lower dash green curve, thus it is about to reached to critical 
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dynamic stable system. Finally the black curves are relatively far from each 

other and this indicates for fully dynamically stable system.    
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Figure  5.13. Universal moments and critical moments about yU axis. 

The locomotion of wheels and the manipulation of RDJ yielded torques 

propagated into universal platform frame as shown in Figure 5.14. As well as 

the constant black curves indicate for constant wheels torques and symmetric 

manner. However, the interior manipulations in shoulders disturbed the 

symmetric form and add manipulation effects as shown in figure bellow.   
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Figure  5.14. Propagated torques about (xU,yU,zU) axes. 

The gravity forces of link center of masses yielded moment effect on the 

platform, because the rover attitude is rotating about yU-axis as seen in Figure 

5.15.   
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Figure  5.15. Propagated moment of gravity forces about (xU,yU,zU) axes. 
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The moment of inertial force is resulted from the locomotive wheels and 

manipulation of RDJ, Figure 5.16 shows that the black curves are constant 

values because of symmetric manner and fixed manipulations, while the rest 

curves are variable with respect to RDJ manipulations. 
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Figure  5.16. Propagated moment of inertial forces about (xU,yU,zU) axes. 

 

Finally, the effect of normal forces is simulated in Figure 5.17 which 

shows the black curves with constant values because of constant normal forces, 

continuous connection with surface during the travel, and fixed manipulation. 

However, the blue curves suddenly and significantly changed at time 118s as a 

result of discontinuity occurred between the right front leg and surface; In fact 

as explained previously, this time the rover lost its dynamic stability. 
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Figure  5.17. Propagated moment of normal forces about (xU,yU,zU) axes. 
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3. Wheels, RDJ, and LDJ Motions on Inclined Surface. 

This example studies the effect of rover elevation on inclined surface 

with angle 20.7° as shown in Figure 5.18; the rover locomoted forward and 

subjected to three tests done in RDJ and LDJ as represented in black, green, 

and blue curves with wheel acceleration 2.5 m/s2 as shown in Table 5.4: 

 

 

 

 

 

 

 
Figure  5.18. Rover’s shoulders closing on inclined surface. 

 

Table  5.4. conf_0 → conf_0, conf_0 → conf_1, conf_0 → conf_2 

1Rθ  2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ  

conf_0 0 0 - 4
π

4
π  0 0 4

π  - 4
π  

conf_1 0 0 - 9
π

9
π  0 0 9

π  - 9
π  

conf_2 0 0 -18
π

18
π 0 0 18

π -18
π  

 



 

 

157

For being symmetric configurations in three tests, the platform attitude 

was congruent to the inclination of surface irrespective to the shoulders 

opening or joining, as shown in Figure 5.19 
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Figure  5.19. Platform attitude. 

 

Figure 5.20 shows that the front legs share the same normal forces and 

higher values in comparison to the rear legs, as a result of wheel accelerations 

and shoulders joining. On other words, high acceleration and lower shoulder 

angles yield pressure on the single line delimited by contact points of front legs. 

The following picture shows constant normal forces regarding to constant 

manipulations (black curve), and shows variable normal forces with respect to 

acceleration (green and blue curves). However, the front normal forces 
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represented in blue curve shows constant normal forces after disconnection 

occurred between the rear legs and surface at time 137.   
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Figure  5.20. Normal forces. 

 

Above Figure shows the blue curves denoting for rear legs were 

becoming without contact at times 137 second. It means that when the 

shoulders on both sides were closing to each other, the rover elevation with 

respect to inclined surface got higher and the pressure exerted on front legs got 

increase with taking into consideration the significant wheeled accelerations, 

and then the rover rotated about single line delimited by the front legs making 
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the rear legs without contact with surface. This process threatens the dynamic 

rover stability as shown in Figure 5.21; the solid blue curve touched the dash 

line at 137 second, thus the adopting of third test will lead to dynamic unstable 

system. The solid green curve is trying nearly approaching from the dash green 

curve, thus it reached to critical dynamic stable system. Finally the black curves 

are relatively far from each other and this indicates for fully dynamically stable 

system.    

0 20 40 60 80 100 120 140 160 180 200
-15

-10

-5

0

5

10
exerted Moment about zu-axis of universal frame

TU
(3

) (
N

.m
)

Time (s)

Front critical moment 

Rear critical moment 

 
Figure  5.21. Universal moments and critical moments about zU axis. 

 
 

The effects of propagated moments resulted from gravity forces, inertial 

forces exerted on the center of mass of links, normal forces exerted on wheels 

are simulated in Figure 2.22, 2.23, and 2.24 respectively.  
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Figure  5.22. Propagated moment of gravity forces about (xU,yU,zU) axes. 
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Figure  5.23. Propagated moment of inertial forces about (xU,yU,zU) axes. 

 Figure 5.24 shows significant and sudden change occurred in blue curve 

about zU axis, as a result of losing the connection between rear legs and surface; 

and this simply simulates the unstable situation. 
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Figure  5.24. Propagated moment of normal forces about (xU,yU,zU) axes. 
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4. Wheels motion on flat and inclined surface. 

This example can be briefed in three periods; firstly, a flat period when 

the rover moved over flat surface and the platform attitude were congruent 

with surface. Secondly, a transition period when the rover suddenly faced an 

inclined surface with inclined angle 30° at time 100 second, the front wheels 

started to move on inclined surface while rear legs were still on flat surface and 

the platform attitude was under rotation. Finally, an inclined period when the 

rear legs traversed the flat surface and the platform attitude became congruent 

with inclined surface.  

 

The configurations are in fixed symmetric forms with different open 

shoulders 90°, 45°, 20°, respectively, as shown in Table 5.5.  

Table  5.5. conf_0 → conf_0, conf_1 → conf_1, conf_2 → conf_2 

1Rθ  2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ  

conf_0 0 0 - 4
π

4
π  0 0 4

π  - 4
π  

conf_1 0 0 - 8
π

8
π  0 0 8

π  - 8
π  

conf_2 0 0 -18
π

18
π 0 0 18

π -18
π  

 

The time delay between the front wheel and rear leg can be computed as 

fellow 
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3 3RF 3 3RR
delay_R

a sinθ a sinθt 0.5vv
− +

=
×

 

3 3LF 3 3LR
delay_L

a sinθ a sinθt 0.5vv
−

=
×

 

 

Where, vv is wheel acceleration value, in this example vv = 0.5 m/s2 is chosen 

small in order to make the transition period longer and to study the comparisons clearly 

and precisely. The three tests have 1.5042, 1.2649, and 0.7454 second as time delays 

between front and rear legs. During the transition period, the rover undergoes to pitch 

rotation. The time of rotation is a function of shoulder angle and wheel acceleration. In 

Figure 5.25, the black curve stands for first test and it takes longer rotation time; and blue 

curve accomplishes its rotation faster. Then after the rear legs traversed the flat surface, 

the steady pitch attitude takes place and the whole rover becomes congruent with the 

surface inclination. 
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Figure  5.25. Platform attitude. 
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As being symmetric form and moving on flat surface, the normal forces 

for front legs were equally greater than the rear legs as a result of inertial 

effects. However at the time of contacts with incline surface, the normal forces 

of front legs were gradually decreasing during the transition period as shown in 

Figure 5.26. The front legs represented in blue curve shows it becoming zero 

during the transition period exactly, whereas the rear legs became fully 

responsible for the rover heaviness see Figure 5.27.  
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Figure  5.26. Normal forces. 
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Figure  5.27. Rear legs lost the contact with ground. 

Figure 5.28 shows the simulation of dynamic stability for three tests; in 

first test represented in solid black curve which is far from the critical curves; 

while green curves were somehow close trying to reach the critical situation; 

and finally the dynamic instability occurred in third test represented in solid 

blue curve touching the rear critical curves represented in dash blue curve 

during the time of transition period; where it shows the universal moment at 

platform equal the rear critical moment. Thus, the open shoulders with 20° is 

not capable for moving from flat to inclined surface with an angle 30°. The 

zooming for transition period keeps a small distance that separates the 

universal moments and the critical moments for all boarders, else rear critical 

moments regarding to third test.   
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Figure  5.28. Universal moments and critical moments about zU axis. 
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5. Wheels motion on sinusoidal surface. 

This example studies the effect of wheel acceleration locomoted on 

sinusoidal surface subjected to three tests done in wheels accelerations 1, 2, and 

3 m/s2 as represented in black, green, and blue curves, respectively. In addition, 

the rover configurations of four manipulators were manipulated in fixed 

symmetric manner as shown in Table 5.6: 

Table  5.6. conf_0 → conf_0  

1Rθ  2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ  

conf_0 0 0 - 6
π

6
π  0 0 6

π  - 6
π  

 

There is fixed 60° angle between open shoulders on both sides, thus the 

delay time between the front and rear legs are 0.8944, 0.6325, and 0.5164 

second. The rear legs share the elevations of front legs after the elapse of those 

delay times. The pitch orientations for three speeds were simulated in Figure 

5.29; it shows rover was ascending the sinusoidal surface with negative angle 

and descending with positive angle with same amplitude for three speeds and 

different time delay between those speeds. Zero amplitude of pitch angle 

denotes the top of concave and bottom of convex. 
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Figure  5.29. Pitch angle. 
 

The normal forces for front legs were equal and greater than equal rear 

legs in ascending and descending locomotion as a result of high acceleration 

effect of wheels as shown in Figure 5.30. The amounts of wheel acceleration 

are chosen large enough to overcome the gravity force which decelerates the 

rover at ascending motion, and in order to study their effects on dynamic 

stability. The normal forces of rear legs with highest speed (3 m/s2) represented 

in blue curve were zero during the travel else in the bottom of convex when 

the rover moves half ascending travel where the pitch angle -11.3°; while 

regarding to second test (2 m/s2) represented in green, the normal forces of 
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rear legs became zero for shorter time in comparison with blue and green 

curves as a result of less acceleration. 
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Figure  5.30. Normal forces. 

 

Figure 5.31 shows that the universal moment far from the critical 

moments in the case of black curves (1 m/s2), so that this test is considered 

dynamically stable throughout the travel. In the case of 2 m/s2 the solid green 

curve was touch the lower dash curve some part of  travel time, thus the 

second test is considered dynamic instable. However, in the case 3 m/s2 the 

universal moment represented in solid blue curve touched the dash blue curve 
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most of the time and this concludes the dynamic unstable system, else the 

periodic time interval shown in Figure 5.32. 
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Figure  5.31. Universal moments and critical moments about zU axis 
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Figure  5.32. Zooming for universal moments and critical moments about zU axis 
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The torques exerted on wheels are simulated for three tests as shown in 

Figure 5.33, those values are in direct proportional to wheel acceleration. 
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Figure  5.33. Propagated torques about (xU,yU,zU) axes. 

The effect of moment of inertial forces are simulated in constant curves 

as a result of constant configurations, and it in direct proportional to wheel 

acceleration as shown in Figure 5.34 
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Figure  5.34. Propagated moment of inertial forces about (xU,yU,zU) axes. 
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The effect of moment of gravity forces are simulated in sinusoidal 

curves as a result of sinusoidal attitude, and it not in direct proportional to 

wheel acceleration, but platform attitude angles as shown in Figure 5.35 

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal Moment of gravity force exerted on center of mass of links(N.m)

G
ra

vi
ty

 M
om

en
t xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

G
ra

vi
ty

 M
om

en
t yu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

Time (s)

G
ra

vi
ty

 M
om

en
t zu

 

Figure  5.35. Propagated torques about (xU,yU,zU) axes. 

 

The effect of moment resulted from normal forces is simulated in Figure 

5.36, and it is appeared in sinusoidal curves. The third test yielded the highest 

moment about zU axis as a result of highest acceleration. The top of concave is 

non-uniform due to the normal force constraint. 
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Figure  5.36. Propagated moment of normal forces about (xU,yU,zU) axes. 
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6. Wheels, RDJ, LDJ motions on random surface. 

This example studies the effect of wheel acceleration locomoted on 

random surface subjected to two tests done in wheels accelerations 0.05 and 1 

m/s2 as represented in black and blue curves, respectively. In addition, the 

rover configurations of four manipulators are manipulated in symmetric 

manner as shown in Table 5.7: 

Table  5.7. conf_0 → conf_1 

1Rθ  2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ  

conf_0 0 0 - 4
π

4
π  0 0 4

π  - 4
π  

conf_1 0 0 - 6
π

6
π  0 0 6

π  - 6
π  

 

This example considered symmetric configurations where the right and 

left shoulders were joined closely from 90° till 60°. Figure 5.37 simulated the 

platform orientation with respect to universal frame; it reflects the geometry of 

random elevations surface; the rover moved on flat surface, and ascended and 

descended non-uniform surface; the rear legs moved on the front elevations 

after delay time 1 second; In addition, it shows the platform subjected to three 

kinds of rotations:  
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1) Zero attitude, where the platform frame is contingent with universal 

frame during the interval [0-16s] and [111-134s] and [179-200s]. 

2) Clockwise rotations during the interval [17-110s], maximum angle -

55.2° at time 100s. 

3) Counter-clockwise rotations during the interval [135-200s], maximum 

positive angle reached to 48.26° at time 178s. 
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Figure  5.37. Platform pitch angle. 

Figure 5.38 simulated the normal forces exerted on four legs for two 

tests represented in black and blue curve. The front legs represented in black 

curves were without contact during the interval [86-100s] and rear legs were 

without contacts during the time interval [169-178s]. While the front legs 

represented in blue curve were in contact with surface during travel times but 

the rear legs were without contacts during the time interval [164-178s].  
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Figure  5.38. Normal forces 

 

Figure 5.39 simulated the universal moments exerted on platform 

represented in solid curves, and front and rear critical moments represented on 

dash curves. It shows the solid black curve (0.05 m/s2) touched the rear critical 

moment during time interval [86-100s] In other words, the front legs were 

without contact with surface and the whole rover rotated about the rear legs, 

thus the rover was dynamically unstable system during this interval.  It also 

shows the solid black curve touched the front critical moment during the time 

interval [169-178s], and analytically it means that the rover rotated about the 
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front legs making the it dynamically unstable system. Moreover, it shows the 

solid blue curve (1 m/s2) touched the front critical moment during time interval 

[164-178s], therefore, the rover is dynamically unstable during this interval. 
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Figure  5.39. Universal moments and critical moments about zU axis 

These imply the advantages and disadvantages of inertial accelerations of 

wheels and the rover configurations. The higher acceleration (1 m/s2) 

positively sustained the stability during interval [86-100s], but it negatively 

speeded the process of instability during interval [164-178s], whereas less 

acceleration (0.05 m/s2) delayed the instability for 5 second.  
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According to rover configurations, it was used the same configurations 

for the two acceleration tests, and it shows that open shoulders with 90° as 

shown in time 0s is much safer and secure for keeping a significant distance 

between the universal moments and critical moments curves of both sides, 

while open shoulders with 60° endangered the system for keeping small 

distance between the universal moments and critical moments of both sides. 

Therefore, imposing control on configurations and accelerations evades the 

danger of tumbling. 

 
 
 
 
 



 

 

179

 

 

Chapter Six 

6. Conclusion 

This thesis exhibits a new mechanical design for a quadruped mobile 

robot. The four identical wheeled legs were gaining high level coordinations in 

various aspects. This feature contributed in increasing the rover speed stably 

and smoothly on uneven terrain. Besides, this work inherited the advantages 

and eliminated the drawbacks of both legged and wheeled locomotion in 

computational manner, for being equipped with wheels and legs 

simultaneously. Thus, the platform a base link undergoes under a smooth and 

soft locomotion in relative to four wheeled-legged manipulators and surface 

geometries.  

 

The platform attitudes were evaluated with respect to platform universal 

frame. The changes occurred on joint configurations and different ground 

elevations disturb the symmetric posture, and rotate the platform smoothly 

leaving the universal axis by roll, pitch, and yaw angle. 
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Newton-Euler Recursive method was employed, and it provided an on-

line monitoring system for the sources of dynamic forces and moments exerted 

on each link of the four manipulators. The decomposition of universal forces 

and moments made the point clearer throughout studying the source of each 

force and moment exerted on the universal frame. The universal moment, 

which acts about platform link of the rover, is resulted from the normal forces 

acted at wheels, gravity forces, inertial forces and torques exerted on the center 

of mass of each link.  When rover faced random surface during motion, a 

change has been occurred in dynamic disturbances at the wheels generating 

considerable moments about the platform link expressed in universal frame.  

 

Because four legs are considered indeterminate system, in this thesis the 

normal forces were evaluated for three contact legs in the case the non-

symmetric rover. However, in the case of symmetric configurations the normal 

forces are distributed equally between the sides which sharing the same the 

inertial forces, ground geometries, and platform attitude. Thus regarding to 

symmetric four legs, normal forces were evaluated by considering two legs 

sharing the same value. The results simulated the effect of high acceleration on 

the connectivity between wheels and surface.  
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A new dynamic stability criterion was presented for rover operating 

arbitrary on various shapes of surfaces, and variable rover configurations. In 

addition, this criterion provided on-line calculations for the effect of rover 

configurations, various surface geometry, platform attitudes, kinematic values, 

dynamic effects, and variable ground normal forces. 

   

The gravity force is static feature, and it is not influenced with 

acceleration at all, but its moment significantly effects on the dynamic stability 

in the presence of changing in platform attitude. While inertial force is dynamic 

feature, and it is not influenced with ground geometry and platform attitude, 

and it significantly effects on the dynamic stability.  

 

The simulation model was presented for a various examples exploiting 

MatLab which provided on-line calculations for predicting the behavior of a 

physical system under a variety of surface geometries and rover configurations. 

 

In future work, inverse kinematics can be exploited for determining the 

generalized coordinates (angles of joints), and then evaluating the required 

rover configurations to enable the uncontact leg to select its foothold on 
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surface. Furthermore, the platform attitudes can be evaluated as function of 

rover configurations, surface geometries, and dynamic forces and moments. In 

addition, normal forces exerted on four legs should be evaluated in the case of 

non-symmetric manner in future work.  
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Appendices 

 

Appendix A: Denavit-Hartenburg Convention 

In 1955, Denavit and Hartenburg [64,62] constructed a novel technique 

for setting up orthonormal coordinate frames to a pair of adjacent links in an 

open kinematics chain. DH describes the kinematics of the robot by describing 

the position and orientation of each link with respect to the previous link. In a 

simple manner, each pair of successive joints is characterized by a distance 

between joint axes a, a twist between joint axes α , an offset d, and a joint angle 

θ .  

Each joint axis [65] should be firstly labeled in each manipulator with a 

coordinate frame number. Starting from O0 as the base frame to On as the end-

effector. The next step is to set up the three dimensional coordinate system. 

The zi axis represents the motion of link i+1, so that it is assigned along the 

axis of rotation for revolute joint or in the direction of translation for prismatic 

joint. For parallel joint axis, zixzi-1=0, the xi-1 axis is directed from frame Oi to 

Oi-1, and for intersecting joint axes, the xi-1 is directed to be perpendicular to 
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the plane or parallel to the vector cross product zi-1×zi. The y-axis is defined in 

the direction needed to complete a right-handed orthonormal coordinate 

frame. The system (x0, y0, z0) is assigned at link 0, the platform. For the end-

effector, instead of attaching coordinate system (x4, y4, z4) to link 4, the system 

(n, o, a) is defined with x4 replaced by the unit normal vector n, y4 by the unit 

orientation vector o, and z4 by the unit approach vector a. the system (n, o, a) 

specifies the orientation of the wheel. The DH parameters, iθ , di, ai, and α i, 

are defined for each joint pair according to the criteria as given bellow.  

Table A.1. DH explanation. 

DH parameters Notations Description 

Joint angle iθ  rotating angle between the xi-1 and xi axes about 
zi-1 axis. 

Link offset di translating distance from xi-1 and xi along zi-1. 

Link length ai translating distance from zi-1 and zi along the xi. 

Twisted angle 
iα  rotating angle between zi-1 and zi axis about xi 

axis. 
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Figure A.1. Two adjacent links [65]. 

So the homogeneous transformation matrix 1i
iA −  that represents the 

position and orientation of the coordinate system i relative to i-1 is: 

1i
iA −  = Rot(zi-1, iθ ) . Tran(0, 0, di) . Tran(ai, 0, 0) . Rot(xi, iα ) 
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In a robot manipulator, there are two types of joints; revolute and 

prismatic. For revolute joint, iθ  varies by allowing for rotation between two 

links about an axis and is called the joint angle where the link offset di is 

constant; and for a prismatic joint, the link offset di varies by allowing for 

translation (sliding) motion along an axis and is called the joint displacement 

where the joint angle iθ  is constant and the link length also ai = 0. The 

generalized coordinates, qi, represent the formulations of these two types as 

follows: 

⎩
⎨
⎧

=
jointprismaticaford

jointrevoluteaforθ
q

i

i
i  (A.2) 

 

 

 

 

Figure A.2. Types of joints 

Rotation Translation 
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Appendix B: Inverse kinematics 

Until now, we know the target in which the manipulator reached by 

solving the forward kinematic equations for the Rover, and we have completed 

the system transform graph and also defined the homogeneous transformation 

between frames of the platform universal, ground universal, and contact point. 

However, we are now concerned to know the joints angles in order to make the 

required joints’ moves 1θ , 2θ , 3θ  and 4θ  in term of the given numerical values 

of the orientation and position.  

 

Equating the generalized matrix 0
4B  to the forward kinematics 0

4A , we 

obtain matrix equation:  
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Where, the matrix equality implies 12 element-by-element equality 

forming 12 non-trivial equations 

nx= –C1C2C34 + S1S34 (B.2) 
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ny= –S1C2C34–C1S34 (B.3) 
nz= S2C34 (B.4) 

 
ox= C1C2S34+S1C34 (B.5) 
oy= S1C2S34–C1C34 (B.6) 
oz= –S2S34 (B.7) 

 
ax= C1S2 (B.8) 
ay= S1S2 (B.9) 
az= C2 (B.10) 

 
px= –C1C2(a4C34+a3C3)+S1(a4S34+a3S3) (B.11) 
py= –S1C2(a4C34+a3C3)–C1(a4S34+a3S3) (B.12) 
pz= S2(a4C34+a3C3)+d1 (B.13) 

 

The solutions for 1θ , 2θ , 3θ  and 4θ  through using the arc cosine or sine 

function are inaccurate, since the sign of angle will not be taken into 

consideration and the division by isinθ  will make it undefined whenever iθ  is 

close to 0 or ±180 [66]. Therefore, the arc tangent function will mostly be 

taken into our computation providing two arguments, {x, y}, within the 

interval of –π ≤ iθ  < π in order to check the sign of y and x and examine when 

either x or y is zero. x represent the adjacent side, and y represent the opposite 

side. This procedure will provide the correct and accurate results. 

 

However, one of the most difficult forms of trigonometric equations is 

presented here that solved by squaring and adding [67]. Moreover, the arc 
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cosine function will, in this case, be taken into computation providing two 

arguments, {x, y}, within the interval of –π ≤ iθ < π  

 

 

 
 
 
 
 

Figure B.1. The atan2(y, x) function 

The angle variables are evaluated in a sequential manner; each variable is 

isolated by pre-multiplying the matrix equation successively by the inverse 

transforms starting at base frame ( ) 10
1A

−  and working forward 

0 0
4 4B A=  (B.14) 

( ) 10 0 1
1 4 4A B A

−
=  (B.15) 

( ) ( )1 11 0 0 2
2 1 4 4A A B A

− −
=  (B.16) 

( ) ( ) ( )1 1 12 1 0 0 3
3 2 1 4 4A A A B A

− − −
=  (B.17) 

 

The matrices elements on the left hand sides of the above matrix 

equations are functions of the (i-1)th joint variables and the numerical values 

iθ

x  y
+ +

x  y
− +

x  y
− −

x  y
+ −

x

y
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transform 0
4B . The matrix elements on the right hand sides are products of A 

matrices, and these are either zero, constant, or functions of the 1th to 4th joint 

variables. The products of A matrices, defined on the right hand side, are 

evaluated starting at link four 3
4A  and working back towards the base frame as 

follows: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
Sa0CS
Ca0SC

4444

4444

3
4A  (B.18) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−−−

−−−

=

1000
0100

SaSa0CS
C3aCa0SC

333443434

33443434

2
4A  (B.19) 

2 34 2 34 2 2 4 34 3 3

2 34 2 34 2 2 4 34 3 31
4

34 34 4 34 3 3

C C C S S C (a C a C )
S C S S C S (a C a C )

A
S C 0 a S a S
0 0 0 1

− − +⎡ ⎤
⎢ ⎥− − − +⎢ ⎥=
⎢ ⎥− − − −
⎢ ⎥
⎣ ⎦

 (B.20) 

 

1. Differential joint angle; 1θ : 

If we pre-multiply equation B.14 by ( ) 10
1A − , we obtain equation B.15 
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( ) 1
4

0
4

10
1 ABA =

−  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−−
+−−−
+−−

=

1000
SaSa0CS

)CaC(aSCSSCS
)CaC(aCSSCCC

1000
0CS

d0
0SC

333443434

3334422342342

3334422342342

zzz

yyyy

xx

11

1

11

1000
paon
paon
paon

0
10

0

z

xx

 (B.21) 

 

The left hand side of above equation is a function of the given numerical 

values of generalized transform 0
4B  pre-multiplied by a function of 1θ  inside 

the inverse transform of 0
1A . The right hand side is a function of 2θ , 3θ , and 

4θ . After rearranging the above equation, we obtain 

1 x 1 y 1 x 1 y 1 x 1 y 1 x 1 y

z z z 1

1 x 1 y 1 x 1 y 1 x 1 y 1 x 1 y

C n S n C o S o C a S a C p S p

n o a p dz
S n C n S o C o S a C a S p C p

0 0 0 1

+ + + +⎡ ⎤
⎢ ⎥

− − − − +⎢ ⎥ =⎢ ⎥− + − + − + − +⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 34 2 34 2 2 4 34 3 3

2 34 2 34 2 2 4 34 3 3

34 34 4 34 3 3

C C C S S C (a C a C )
S C S S C S (a C a C )

S C 0 a S a S
0 0 0 1

− − +⎡ ⎤
⎢ ⎥− − − +⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥
⎣ ⎦

 (B.22) 

 

The third row, third column element on the right hand side of equation 

(B.22) is zero. Equating this to the element on the left hand at the same 

location we obtain 
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1 1 yS Ca a 0x− + =  (B.23) 

 

This form denotes for a point symmetric redundancy, because it 

generates two solutions that are symmetric about the origin as shown in Figure 

B.2.  

 

 

 

Figure B.2. Point symmetric redundancy 

The first solution can obtained by Adding xa1S  to both sides and dividing by 

xa1C , we get  

y1
1

1 x

asinθ
tanθ

cosθ a
= =  (B.24) 

y1
1

x

a
θ tg

a
−
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=  (B.25) 

 

The angle 1θ  is obtained from the computer in term of atan2 function as   

( )xy1 a,a2atanθ =  (B.26) 
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the second solution for 1θ  can be obtained by adding to both sides y1aC− , and 

dividing by xa1C , and canceling xa−  on the left hand side and C1 on the right 

side hand.  

( )1 y xθ atan 2 a , a= − −  (B.27) 

 

After determining the value of 1θ , all elements inside the left hand side are 

totally known. We check the right hand side for other functions of single 

variables, 1θ  can be found. 

 

2. Conjunctional joint angle; 2θ : 

Examining the right hand side for further unknown individual joint 

coordinate, we can equate the 1,4 and 2,4 elements from left and right hand 

sides of equation B.22.  

1 x 1 y 2 4 34 3 3C p S p C (a C a C )+ = − +  (B.28) 

        z 1 2 4 34 3 3Sp d (a C a C )− + = − +  (B.29) 

then, 

( ) ( )( )2 z 1 1 x 1 yθ atan 2 p d , C p S p= − − + − +  (B.30) 

 



 

 

203

The angle 2θ  here is always unique and there is no degeneracy as in the case of 

the previous angle 1θ . 

 

We check the right hand side for further functions of single variables. 

Finding none, we need for new pre-multiplication technique for obtaining new 

information. 

 

3. Wheel frame; 4θ : 

As mentioned before, the wheel is equipped for locomotive and 

manipulative mechanism, meanwhile the inverse kinematics deals only with 

manipulations apart from wheel rotation. If we pre-multiply equation B.15 by 

( ) 11
2A −  we obtain 

( ) ( ) 2
4

0
4

10
1

11
2 ABAA =⋅⋅ −−  

x x x x1 2 1 2 2 2 1 34 34 4 34 3 3

34y y y y1 1 34 4 34 3 3

1 2 1 2 2 2 1 z z z z

C C S C S S d C S 0 a C a C
S C 0 0 S C 0 a S a S

C S S S C C d 0 0 1 0
0 0 0 1 0 0 0 1

n o a p
n o a p
n o a p
0 0 0 1

⎡ ⎤− − − −⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ =⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

1 2 1 2 y 2 z 1 2 1 2 y 2 z 1 2 1 2 y 2 z 1 2 1 2 y 2 z 2 1

1 1 y 1 1 y 1 1 y 1 1 y

1 2 1 2 y 2 z 1 2 1 2 y 2 z 1 2 1 2 y 2 z 1 2 1 2 y 2 z 2 1

C C S C S C C S C S C C S C S C C S C S S d
S C S C S C S C

C S S S C C S S S C C S S S C C S S S C C d
0 0 0 1

n n n o o o a a a p p p
n n o o a a p p

n n n o o o a a a p p p

x x x x

x x x x

x x x x

− − − −⎡
− − − −

⎣

+ + + + +
+ + + +

+ + + + + + + + −

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦
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34 34 4 34 3 3

34 34 4 34 3 3

C S 0 a C a C
S C 0 a S a S
0 0 1 0
0 0 0 1

− − −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (B.31) 

 

Examining the right hand side, we can equate the 1,4 and 2,4 elements from 

left and right hand sides  

1 2 x 1 2 y 2 z 2 1 4 34 3 3C C p S C p S p C a CS d a− = −+ + −  (B.32) 

                       1 x 1 y 4 34 3 3S p C p a Sa S− = −+ −  (B.33) 

 

The angle 4θ  can be solved by squaring and adding techniques. Let, 

1 4 34 3 3K C a Ca= −−  (B.34) 

2 4 34 3 3K a Sa S= −−  (B.35) 

 

These can be squared and added to give us one trigonometric equation as 

( ) ( ) ( ) ( ) ( )2 2 2 2
1 2 4 3 3 4 3 34 3 34K K a a 2a a C C S S+ = + + +  

          ( ) ( )2 2
4 3 3 4 4a a 2a a C= + +  (B.36) 
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The result implies that there are two solutions for angle 4θ  which are 

symmetric about zero; (+) sign assigns for RF leg and LR leg; and (-) sign 

assigns for RR leg and LF leg. 

( ) ( ) ( ) ( )( )( )2 2 2 2
4 1 2 4 3 3 4θ acos K K a a / 2a a= ± + − +  (B.37) 

 

Substituting K1 and K2, we get 

( ) ( ) ( ) ( )( )( )2 2 2 2
4 1 2 x 1 2 y 2 z 2 1 1 x 1 y 4 3 3 4θ acos C C p S C p S p S d S p C p a a / 2a a= ± + − + + − + − +  

 (B.38) 
 

4. Disjunctional joint angle; 3θ : 

The angle 3θ  can be solved by a recursion technique in inverse kinematics 

problem; rearranging the equations B.34 and B.35, respectively, in the forms 

( ) ( )1 3 4 4 3 3 4 4K C a C a S a S= + +−  (B.39) 

( ) ( )2 3 4 4 3 3 4 4K a C a C a SS= + −−  (B.40) 

 

And then equating K3 and K4 respectively to 

3 4 4 3K a C a= +  (B.41) 

4 4 4K a S=  (B.42) 

We obtain,  
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1 3 3 3 4K C K S K= +−  (B.43) 

2 3 3 3 4K K C KS= −−  (B.44) 

 

Applying mutual multiplications of equations B.43 and B.44, we obtain 

3 1 3 3 1 4 3 2 3 3 2 4S K K C K K C K K S K K− − = − +  (B.45) 

 

Rearranging the above equation to 

( ) ( )3 1 3 2 4 3 1 4 2 3S K K K K C K K K K− − = −  (B.46) 

 

Finally, 

( )3 1 4 2 3 1 3 2 4θ atan 2 K K K K , K K K K= − − −  (B.47) 

 

Substituting K1, K2, K3, and K4 we obtain 

( )( ) ( )( )(
( )( ) ( )( ))44y1x134412z2y21x21

344y1x14412z2y21x213

SapCpSaCadSpSpCSpCC

,aCapCpSSadSpSpCSpCC2atanθ

+

+

−−++−+−

+−−+−+=
 (B.48) 
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Appendix C: Kinematic and dynamic parameters 

Rotational matrix 

Rotation matrix transformation from universal frame to base frame is given by 

U
0

c c c s c s s c s s s c
R s cos cos c s

s c s s c c s s sin s c c

φ θ φ θ ψ φ ψ φ θ ψ φ ψ
θ θ ψ θ ψ
φ θ φ θ ψ φ ψ φ θ ψ φ ψ

− + +⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− + − +⎣ ⎦

 (C.1) 

 

Rotation matrices of joints are given by 

1 1
0
1 1 1

C 0 S
R = S 0 C

0 1 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (C.2) 

2 2
1
2 2 2

C 0 S
R S 0 C

0 1 0
−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.3) 

3 3
2
3 3 3

C S 0
R S C 0

0 0 1

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.4) 

4 4
3
4 4 4

C S 0
R = S C 0

0 0 1

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.5) 
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Position vectors  

The position vector from the origin of frame i to i+1 with respect to frame i+1 

is: 

[ ]Ti 1 i 1 i
i 1 i i 1 i 1 i 1 i 1 i 1 i 1r R r a d sinα d cosα+ +
+ + + + + + += =  (C.6) 

 

Applying on the above relation starting from base to end-effector, we obtain 

[ ]T0
0 000r =  (C.7) 

[ ]T1
1
1 0d0r −=  (C.8) 

[ ]T2
2 000r =  (C.9) 

[ ]T3
3
3 00ar =  (C.10) 

[ ]T4
4
4 00ar =  (C.11) 

 

Position vector of center of mass of link i with respect to frame Oi is  

[ ]T1
1
c,1 0d0.50r =  (C.12) 

[ ]T2
c,2 000r =  (C.13) 

[ ]T3
3
c,3 00a0.5r −=  (C.14) 

[ ]T4
4
c,4 00ar −=  (C.15) 
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Masses  

The mass of the robot creates weight and inertia; weight is a force that 

points down vertically in the universal coordinate system. Inertia on the other 

hand creates resistance to acceleration caused by force. The distribution of 

masses among the four legs and platform plays a major role in Specifying the 

location of center of mass for the robot in the case of the rotations in legs. 

 

Rover’s Center of mass 

Each part of the rover is considered as a rigid body, while the rover mass 

is represented in single concentrated point, called Center of Mass. In other 

meaning, the weight of the entire robot mass is focused only at the center of 

mass. 

( ) ( )( )

4
U

i i
U i=0
cm 4

i
i=0

U U U U U U U
c,0R 0 c,1R 1 c,1L 1 c,2R 2 c,2L 2 c,3RF 3 c,3RR 3

U U U U U U
c,3LF 3 c,3LR 3 c,4RF 4 c,4RR 4 c,4LF 4 c,4LR 4

0 1 2 3 4

r m
r =

m

r m + r m + r m + r m + r m + r m + r m +

r m + r m + r m + r m + r m + r m
m + 2 m + m + 4 m + m

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
 (C.16) 

 

where,  
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U
ir  position vector of frame Oi with respect to universal frame OU 

mi mass of the link i starting from platform link and ending at end-effector 

link.  

 

Inertia  

Inertia creates a resistance against the change in velocity or acceleration 

caused by external force. On other words, it is the propensity of the link at rest 

to stay at rest and propensity of the link in motion to stay in motion. Therefore, 

the link with high inertia will be in need for a sufficient amount of torque to 

accelerate or decelerate the object itself. Inertia is considered as mass in the 

case of linear motion and as moment of inertia in the case of rotational motion. 

The mass moment of inertia is directly proportional to the mass distribution 

and the shape of the link.  

 

Inertia matrix for each rigid link is an identical matrix, and it includes 

moments of inertia and products of inertia conforming six unique elements. 

The moments of inertia are three diagonal elements, i.e. Ixx, Iyy, Izz. The 

products of inertia are off-diagonal elements, i.e. Ixy, Ixz, Iyz.  
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zzyzxz

yzyyxy

xzxyxx

III
III
III

I  (C.17) 

The symmetry of link is used to recognize the principal axes. The off-

diagonal elements are equal zero due to symmetry. The principal mass 

moments of inertia can be found without solving the corresponding eigenvalue 

problem. The moments of inertia can be transformed between coordinate 

systems.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

I00
0I0
00I

I  (C.18) 

 

The SI unit for mass moment of inertia is kg m2 

 

For each leg, the links used are one rectangular prism, two slender rods, 

and one thin disk as shown in Figure C.1  
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Figure C.1. Rover’s DH and dynamic parameters 
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Figure C.2. Link’s DH and Dynamic parameters. 

Link 0 is a rectangular prism, and its inertia matrix can be obtain as  

O1 

(b) Link 1 

y1 

z1 

m1 
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d1 

aex ain
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2 2
1

2 20
0 1

2 2

a + d 0 0
mI 0 b + d 03

0 0 a + b

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (B.19) 

Link 1 is a slender rod, and its inertia matrix can be obtain as  

( )2
1 1

1

1 0 0
m d

I 0 0 012
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

  (C.20) 

Inertia matrix for link 2 

2

0 0 0

I 0 0 0

0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.21) 

Link 3 is a slender rod, and its inertia matrix can be obtain as 

( )2
3 3

3

0 0 0
m a

I 0 1 012
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.22) 

Link 4 is a thin disk, and its inertia matrix can be obtain as  

4 4 ex 4 in

2 2
4ex 4ex 4in 4in

I (I ) (I )
1 0 04

1= (m a - m a ) 0 04
10 0 2

= −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (C.23) 
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Now, the table of dynamic parameters can be filled up as follows  

Table C.1. Dynamic parameters table. 

Link  m rx ry rz Ix Iy Iz 

0  m0 0 0 0 ( )2 2
0 1m a + d

3  
( )2 2

0 1m b + d
3  

( )2 2
0m a + b

3  

1 m1 0 1d
2

 0 ( )2
1 1m d
12  0 ( )2

1 1m d
12  

2 m2 0 0 0 0 0 0 

3 m3 3a-
2

0 0 0 ( )2
3 3m a
12  ( )2

3 3m a
12  

4 m4 -a4 0 0 
2 2

4ex 4ex 4in 4inm a - m a
4

2 2
4ex 4ex 4in 4inm a - m a

4

2 2
4ex 4ex 4in 4inm a - m a

2
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Appendix D: Newton-Euler Recursive Formulation 

The dynamic equations of the links are expressed here using the 

relationships of moving coordinate systems. The numerical algorithm for 

Newton-Euler Recursive method can be broken into two forward and 

backward recursions.  

− The forward recursion 

For rotational link i+1 

i
i 1 i i 1ω z q+ += &  (D.1) 
i
i 1 i i 1ω z q+ +=& &&  (D.2) 
0 0
i 1 i i i 1ω ω z q+ += + &  (D.3) 
0 0 0
i 1 i i i 1 i i i 1ω ω z q ω (z q )+ + += + + ×& & && &  (D.4) 
0 0 i 0
i 1 i 1 i 1 iv ω r v+ + += × +  (D.5) 

( )o 0 i 0 0 i 0
i 1 i 1 i 1 i 1 i 1 i 1 ia ω r ω ω r v+ + + + + += × + × × +&  (D.6) 

 

The velocity and acceleration of center of mass of link i are computed 

respectively as follows: 

0 0 0 0
c,i i c,i iv ω r v= × +  (D.7) 

( )0 0 i 0 0 0 0
c,i i c,i i i c,i ia ω r ω ω r v= × + × × +& &  (D.8) 

 

Once the velocities and accelerations of the center of mass of links are 

computed, the inertia forces and moments can be computed for each mass link.  
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Assuming the viscous damping friction is negligible, the total external 

force is given by the Newton’s second law, and whilst the moment is given by 

Euler’s equation. Newton-Euler’s methods first described with regard to the 

fixed base coordinate system [55]  

0 0
i i c,if m v= &  (D.9) 

( )0 0 0 0
i i i i i iτ I ω ω I ω= + ×&  (D.10) 

 
 
−  The backward recursion 

This approach transforms the generalized forces back from the end-

effector On+1 to the base frame O0. The total force and moment exerted on 

center of mass of link i are equal the forces and moments, respectively, 

exerted on link i by link i-1 and i+1:  

0 0 0
i i i 1f F F+= −  (D.11) 
0 0 0 i 0 i 0 0
i i i 1 i 1 i 1 i 1 c,i iτ T T r F (r r ) f+ − + −= − − × − + ×  (D.12) 

 
 

Arranging the above equations in recursive form, we obtain 

0 0 0
i i 1 iF F f+= +  (D.13) 
0 0 i 0 i 0 0 0
i i 1 i 1 i 1 i 1 c,i i iT T r F (r r ) f τ+ − + −= + × + + × +  (D.14) 
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Computational approach 

Multiply i+1
0R  with 1i

1iω
+
+  [65], we obtain   

0 0 i 1
i 1 i 1 i 1ω R ω +
+ + +=  (D.15) 

Multiplying the above equation by i 1
0R + , we obtain 

i 1 i 1 0
i 1 0 i 1ω R ω+ +
+ +=  (D.16) 

 

The lower sub script indicates for the reference coordinate frame. In 

such a way, 1i
1iω
+
+  should be read as an angular velocity vector from frame Oi to 

frame Oi+1 expressed in its own coordinate frame Oi+1.  

 

The rotation matrix of homogeneous transformation of frame Oi+1 with 

respect Oi is  

i 1 i 1 i 1 i 1 i 1
i
i 1 i 1 i 1 i 1 i 1 i 1

i 1 i 1

cosθ sinθ cosα sinθ sinα
R sinθ cosθ cosα cosθ sinα

0 sinα cosα

+ + + + +

+ + + + + +

+ +

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (D.17) 

 

The rotation matrix of homogeneous transformation of frame Oi with 

respect Oi+! is equal  to the transpose or inverse of i
i 1R +  

( ) ( )-1 Ti 1 i i
i i 1 i 1R R = R+

+ +=  (D.18) 
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The position vector from frame Oi to frame Oi+1 expressed in frame Oi+1 is: 

i 1 i 1 i
i 1 i i 1

i 1 i 1 i 1 i 1

i 1 i 1 i 1 i 1 i 1 i 1 i 1

i 1 i 1 i 1 i 1 i 1 i 1

r R r

cosθ sinθ 0 a cosθ
sinθ cosα cosθ cosα sinα a sinθ

sinθ sinα cosθ sinα cosα d

+ +
+ +

+ + + +

+ + + + + + +

+ + + + + +

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

    
i 1

i 1 i 1

i 1 i 1

a
d sinα
d cosα

+

+ +

+ +

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (D.19) 

 

Rewriting the recursive relations to be expressed to local reference 

frame, we get: 

− Forward recursion:  0 ≤ i ≤ n-1 

For rotational joint axis i+1: 

i 1 i 1 i
i 1 i i i 1ω R ω q+ + ⎛ ⎞

⎜ ⎟+ +⎝ ⎠
= + &  (D.20) 

( )i ii 1 i 1
i 1 i i i 1 i i 1ω R ω q ω q+ +
+ + += + + ×& & && &  (D.21) 

i 1 i 1 i 1 i 1 i
i 1 i 1 i 1 i iv ω r R v+ + + +
+ + += × +  (D.22) 

( )i 1 i 1i 1 i 1 i 1 i 1 i 1 i
i 1 i 1 i 1 i 1 i ii 1 i 1v ω r ω ω r R v+ ++ + + + +
+ + + + + += × + × × +&& &  (D.23) 

 
i 1 i 1 i 1 i 1
c,i 1 i 1 c,i 1 i 1v ω r v+ + + +

+ + + += × +  (D.24) 

( )i 1 i 1 i 1 i 1 i 1 i 1 i 1
c,i 1 i 1 c,i 1 i 1 i 1 c,i 1 i 1v ω r ω ω r v+ + + + + + +

+ + + + + + += × + × × +&& &  (D.25) 

i 1 i 1
i 1 i 1 c,i 1f m v+ +
+ + += &  (D.26) 

( )i+1 i 1i 1 i+1 i 1 i 1
i 1 c,i+1 i 1 i 1 c,i+1 i 1τ I ω ω I ω ++ + +
+ + + +
= + ×&  (D.27) 
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− Backward recursion: n ≤ i ≤0 

After computing the inertial forces and moments for each link, backward 

computational procedures can be followed by evaluating one a link at a time 

starting from the end-effector frame and ending at the base frame:  

i i i 1 i
i i 1 i 1 iF R F f+

+ += +  (D.28) 

( )( ) ( )i i i 1 i+1 i i 1 i i i i
i i 1 i 1 i i i 1 i c,i i iT R T R r F r r f τ+ +

+ + += + × + + × +  (D.29) 
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Appendix E: Free-Body Diagram for four manipulators 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.1. Transform graphs for four legged manipulators starting from universal to 
end-effectors. 
 

Where,  Li: Linki. 
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Link 4RF, 4RR, 4LF, and 4LR 

 

 

 

 

 

 

 

 

 

 

Figure E.2. Forces and moments exerted on link 4RF, 4RR, 4LF, and 4LR. 

 
4RF 4RF SRF 4RF
4RF SRF SRF 4RFF = R F + f  (E.1) 
4RR 4RR SRR 4RR
4RR SRR SRR 4RRF = R F + f  (E.2) 

 
( )( ) ( )4RF 4RF SRF SRF 4RF SRF 4RF 4RF 4RF 4RF

4RF SRF SRF 4RF 4RF SRF 4RF c,4RF 4RF 4RFT = R T + R r × F + r + r ×f + τ  (E.3) 

( )( ) ( )4RR 4RR SRR SRR 4RR SRR 4RR 4RR 4RR 4RR
4RR SRR SRR 4RR 4RR SRR 4RR c,4RR 4RR 4RRT = R T + R r × F + r + r ×f + τ  (E.4) 

And, 
4LF 4LF SLF 4LF
4LF SLF SLF 4LFF = R F + f  (E.5) 
4LR 4LR SLR 4LR
4LR SLR SLR 4LRF = R F + f  (E.6) 
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( )( ) ( )4LF 4LF SLF SLF 4LF SLF 4LF 4LF 4LF 4LF
4LF SLF SLF 4LF 4LF SLF 4LF c,4LF 4LF 4LFT = R T + R r × F + r + r ×f + τ  (E.7) 

( )( ) ( )4LR 4LR SLR SLR 4LR SLR 4LR 4LR 4LR 4LR
4LR SLR SLR 4LR 4LR SLR 4LR c,4LR 4LR 4LRT = R T + R r × F + r + r ×f + τ  (E.8) 

 

Link 3RF, 3RR, 3LF, and 3LR 

 

 

 

 

 

 

 

 

Figure E.3. Forces and moments exerted on link 3RF, 3RR, 3LF, and 3LR. 

3RF 3RF 4RF 3RF
3RF 4RF 4RF 3RFF = R F + f  (E.9) 
3RR 3RR 4RR 3RR
3RR 4RR 4RR 3RRF R F + f=  (E.10) 

 

( )( ) ( )3RF 3RF 4RF 4RF 3RF 4RF 3RF 3RF 3RF 3RF
3RF 4RF 4RF 3RF 3RF 4RF 3RF c,3RF 3RF 3RFT = R T + R r × F + r + r ×f + τ  (E.11) 

( )( ) ( )3RR 3RR 4RR 4RR 3RR 4RR 3RR 3RR 3RR 3RR
3RR 4RR 4RR 3RR 3RR 4RR 3RR c,3RR 3RR 3RRT = R T + R r × F + r + r ×f + τ  (E.12) 

and, 

3LF 3LF 4LF 3LF
3LF 4LF 4LF 3LFF = R F + f  (E.13) 
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3LR 3LR 4LR 3LR
3LR 4LR 4LR 3LRF = R F + f  (E.14) 

 

( )( ) ( )3LF 3LF 4LF 4LF 3LF 4LF 3LF 3LF 3LF 3LF
3LF 4LF 4LF 3LF 3LF 4LF 3LF c,3LF 3LF 3LFT = R T + R r × F + r + r ×f + τ  (E.15) 

( )( ) ( )3LR 3LR 4LR 4LR 3LR 4LR 3LR 3LR 3LR 3LR
3LR 4LR 4LR 3LR 3LR 4LR 3LR c,3LR 3LR 3LRT = R T + R r ×F + r + r ×f + τ  (E.16) 

 

link 2R and link 2L 

 

 

 

 

 

 
Figure E.4. Forces and moments exerted on link 2R, 2L. 

 

2R 2R 3RF 2R 3RR 2R
2R 3RF 3RF 3RR 3RR 2RF = R F + R F + f  (E.17) 

( )( ) ( )( )
( )

2R 2R 3RF 3RF 2R 3RF 2R 3RR 3RR 2R 3RR
2R 3RF 3RF 2R 2R 3RF 3RR 3RR 2R 2R 3RR

2R 2R 2R 2R
2R c,2R 2R 2R

T = R T + R r ×F + R T + R r ×F +

r + r ×f + τ
 (E.18) 

and, 

2L 2L 3LF 2L 3LR 2L
2L 3LF 3LF 3LR 3LR 2LF = R F + R F + f  (E.19) 

( )( ) ( )( )
( )

2L 2R 3LF 3LF 2L 3LF 2L 3LR 3LR 2L 3LR
2L 3LF 3LF 2L 2L 3LF 3LR 3LR 2L 2L 3LR

2L 2L 2L 2L
2L c,2L 2L 2L

T = R T + R r ×F + R T + R r ×F +

r + r ×f + τ
 (E.20) 
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link 1R, link 1L 

 

 

 

 

 

 

Figure E.5. Forces and moments exerted on link 1R and link 1L. 

1R 1R 2R 1R
1R 2R 2R 1RF = R F + f  (E.21) 

( )( ) ( )1R 1R 2R 2R 1R 2R 1R 1R 1R 1R
1R 2R 2R 1R 1R 2R 1R c,1R 1R 1RT = R T + R r × F + r + r ×f + τ  (E.22) 

And, 

1L 1L 2L 1L
1L 2L 2L 1LF = R F + f  (E.23) 

( )( ) ( )1L 1L 2L 2L 1L 2L 1L 1L 1L 1L
1L 2L 2L 1L 1L 2L 1L c,1L 1L 1LT = R T + R r ×F + r + r ×f + τ  (E.24) 
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Link 0  

 

 

 

 

 

 

Figure E.6. Forces and moments exerted on platform. 

 
0R 0R 1R 0R 0L 1L 0R
0R 1R 1R 0L 1L 1L 0RF = R F + R R F + f  (E.25) 

( )( ) ( )( )
( )

0R 0R 1R 1R 0R 1R 0R 0L 1L 1L 0L 1L
0R 1R 1R 0R 0R 1R 0L 1L 1L 0L 0L 1L

0R 0R 0R 0R
0R c,0R 0R 0R

T = R T + R r ×F + R R T + R r × F +

r + r ×f + τ
 (E.26) 

 

And finally, forces and moments exerted on platform expressed in 

universal frame can be given by, 

U U 0R
0R 0R 0RF = R F  (E.27) 
U U 0R
0R 0R 0RT = R T  (E.28) 
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Appendix F: Universal forces and moments 

Newton-Euler Recursive method provides a monitoring system for the 

sources of dynamic forces and moments exerted on each link of the four 

manipulators. The decomposition of universal forces and moments can make 

the point clearer throughout studying the source of each force and moment 

exerted on the universal frame.  

1. The source of universal forces: The universal forces are vector 

summations for:  

• Forces exerted on center of link masses resulted from gravity and inertial 

linear accelerations; U i
i iR f , where i represents center of masses of the 

links starting from platform link and ending at the wheel links, link by 

link. 

• External normal forces exerted on the end-effectors; U S
S SA F , exerted on 

the touching wheel with surface. 

Substituting equation E.25 in equation E.27, we obtain 
U U 0R
0R 0R 0RF = R F   

     U 0R 1R 0R 0L 1L 0R
0R 1R 1R 0L 1L 1L 0R= R R F + R R F + f⎡ ⎤⎣ ⎦   

     U 1R U 1L U 0R
1R 1R 1L 1L 0R 0R= R F + R F + R f  (F.1) 
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Substituting equations E.21 and E.23 in equation F.1, we obtain 
U U 1R 2R 1R U 1L 2L 1L U 0R
0R 1R 2R 2R 1R 1L 2L 2L 1L 0R 0RF = R R F + f + R R F + f + R f⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

     U 2R U 2L U 1R U 1L U 0R
2R 2R 2L 2L 1R 1R 1L 1L 0R 0R= R F + R F + R f + R f + R f  (F.2) 

 

Substituting equations E.17 and E.19 in equation F.2, we obtain 
U U 2R 3RF 2R 3RR 2R U 2L 3LF 2L 3LR 2L U 1R U 1L U 0R
0R 2R 3RF 3RF 3RR 3RR 2R 2L 3LF 3LF 3LR 3LR 2L 1R 1R 1L 1L 0R 0RF = R R F + R F + f + R R F + R F + f + R f + R f + R f⎡ ⎤ ⎡ ⎤

⎣ ⎦ ⎣ ⎦  

     U 3RF U 3RR U 3LF U 3LR U 2R U 2L U 1R U 1L U 0R
3RF 3RF 3RR 3RR 3LF 3LF 3LR 3LR 2R 2R 2L 2L 1R 1R 1L 1L 0R 0R= R F + R F + R F + R F + R f + R f + R f + R f + R f  (F.3) 

 
Substituting equations E.9, E.10, E.13, and E.14 in equation F.3, we obtain 

U U 3RF 4RF 3RF U 3RR 4RR 3RR U 3LF 4LF 3LF
0R 3RF 4RF 4RF 3RF 3RR 4RR 4RR 3RR 3LF 4LF 4LF 3LF

U 3LR 4LR 3LR U 2R U 2L U 1R U 1L U 0R
3LR 4LR 4LR 3LR 2R 2R 2L 2L 1R 1R 1L 1L 0R 0R

F = R R F + f + R R F + f + R R F + f +

R R F + f + R f + R f + R f + R f + R f

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎣ ⎦

 

     
U 4RF U 4RR U 4LF U 4LR U 3RF U 3RR U 3LF
4RF 4RF 4RR 4RR 4LF 4LF 4LR 4LR 3RF 3RF 3RR 3RR 3LF 3LF

U 3LR U 2R U 2L U 1R U 1L U 0R
3LR 3LR 2R 2R 2L 2L 1R 1R 1L 1L 0R 0R

= R F + R F + R F + R F + R f + R f + R f +

R f + R f + R f + R f + R f + R f
 (F.4) 

 
Finally, substituting equations E.1, E.2, E.5 and E.6 in equation F.4, we obtain 

U U 4RF SRF 4RF U 4RR SRR 4RR U 4LF SLF 4LF
0R 4RF SRF SRF 4RF 4RR SRR SRR 4RR 4LF SLF SLF 4LF

U 4LR SLR 4LR U 3RF U 3RR U 3LF U 3LR U 2R
4LR SLR SLR 4LR 3RF 3RF 3RR 3RR 3LF 3LF 3LR 3LR 2R 2R

U
2L

F = R R F + f + R R F + f R R F + f +

R R F + f + R f R f + R f + R f + R f +

R f

+
+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎣ ⎦

2L U 1R U 1L U 0R
2L 1R 1R 1L 1L 0R 0R+ R f + R f + R f

 

     
U SRF U SRR U SLF U SLR U 4RF U 4RR
SRF SRF SRR SRR SLF SLF SLR SLR 4RF 4RF 4RR 4RR

U 4LF U 4LR U 3RF U 3RR U 3LF U 3LR
4LF 4LF 4LR 4LR 3RF 3RF 3RR 3RR 3LF 3LF 3LR 3LR
U 2R U 2L U 1R U 1L
2R 2R 2L 2L 1R 1R 1L 1L 0R

= R F + R F + R F + R F + R f + R f +

R f + R f R f + R f + R f + R f +

R f + R f + R f + R f + R

+
U 0R

0Rf

 (F.5) 

 

Where, equation F.5 gives the vector summation of the external normal 

forces exerted on the touching wheel with surface, 



 

 

229

 
4

U cs U SRF U SRR U SLF U SLR
cs cs SRF SRF SRR SRR SLF SLF SLR SLR

cs=1

R F = R F + R F + R F + R F∑  (F.6) 

 

Also, it gives the vector summations of the forces exerted on center of link 

masses resulted from gravity and inertial accelerations 
4

U i U 4RF U 4RR U 4LF U 4LR U 3RF U 3RR U 3LF
i i 4RF 4RF 4RR 4RR 4LF 4LF 4LR 4LR 3RF 3RF 3RR 3RR 3LF 3LF

i=0
U 3LR U 2R U 2L U 1R U 1L U 0R
3LR 3LR 2R 2R 2L 2L 1R 1R 1L 1L 0R 0R

R f = R f + R f + R f + R f R f + R f + R f +

R f + R f + R f + R f + R f + R f

+∑  (F.7) 

 

2. The source of universal moment: The moments exerted on platform are 

vector summations for:  

• Moment of exerted force on center of link masses resulted from gravity 

and inertial linear accelerations; ( )U U i
c,i i ir × R f . 

• Moment exerted on center of link masses resulted from inertial angular 

accelerations; U i
i iR τ . 

• Moments of external normal forces exerted on the end-effectors; 

( )U U S
4 S Sr × R F , exerted on the touching wheel with surface. 

Where, i represents link’s frame starting from platform link and ending 

at the wheel links of four manipulators, link by link. 

 

Successive substitutions inside equation E.28 starting from platform 

frame and ending at end-effectors, 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

U U U SRF U U SRR U U SLF U U SLR
0R 4RF SRF SRF 4RR SRR SRR 4LF SLF SLF 4LR SLR SLR

U U 4RF U U 3RF U U 4RR U U 3RR
c,4RF 4RF 4RF c,3RF 3RF 3RF c,4RR 4RR 4RR c,3RR 3RR 3RR

U U 2R U U 1R
c,2R 2R 2R c,1R 1R 1R

T = r × R F + r × R F r R F r R F

r R f r R f r R f r R f

r R f r R f r

+ × + × +

× + × + × + × +

× + × + ( ) ( ) ( )
( ) ( ) ( ) ( )

U U 0R U U 1L U U 2L
c,0R 0R 0R c,1L 1L 1L c,2L 2L 2L

U U 3LF U U 4LF U U 3LR U U 4LR
c,3LF 3LF 3LF c,4LF 4LF 4LF c,3LR 3LR 3LR c,4LR 4LR 4LR

U 4RF U 3RF U 4RR U 3RR U 4LF
4RF 4RF 3RF 3RF 4RR 4RR 3RR 3RR 4LF 4LF

R f r R f r R f

r R f r R f r R f r R f

R τ R τ R τ R τ R τ R

× + × + × +

× + × + × + × +

+ + + + + U 3LF U 4LR U 3LR
3LF 3LF 4LR 4LR 3LR 3LR

U 2R U 1R U 2L U 1L U 0R
2R 2R 1R 1R 2L 2L 1L 1L 0R 0R

τ R τ R τ

R τ R τ R τ R τ R τ

+ + +

+ + + +

 (F.8) 
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Matlab Code 
 

main_menu_dynamic.m 
 

function m= main_menu_dynamic() 
 
close all; 
Locomotion_Case = 'DN' 
 
while 1, 
  
 clc 
      
    which = menu('_____Dynamic Case______', ... 
   ' 1. Wheels Motion on Flat Surface....................', ... 
                 ' 2. Wheels, RFDJ and RRDJ Motion on Flat Surface.......', ... 
                 ' 3. Wheels, RCJ and LCJ Motion on Flat Surface.......', ...  
                 ' 4. Wheels, RCJ,LCJ,RDJ,& LDJ Motion on Flat Surface ', ... 
                 ' 5. Wheels Motion on Step Flat Surface...............', ... 
                 ' 6. Wheels, RFDJ and RRDJ Motions on Step Flat Surface..', ... 
                 ' 7. Wheels, RDJ and LDJ Motion on Inclined Surface....,,,,', ... 
                 ' 8. Wheels Motion on Flat & Inclined Surface.............', ... 
                 ' 9. Wheels Motion on Sinusoidal Surface..................', ... 
                 '10. Wheels Motion on Non-uniform Surface..................', ... 
     'Exit'); 
              
 if  which == 1, 
        close all; 
        Surface_geometry = 'F';  % GG1         
        Touch = [1 1 1 1]'; 
         
        Rover_1                   % q= Conf_0; q= Conf_1; 
        
        vv = 2;  processes;  
        Moment1 = Momentt;  
        Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront; 
        Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight; 
        Normal_Forces1 = Normal_Forces; 
        qm1 = qm; 
        Force1 = Force;  
        fc1 = fc; 
        fc_Moment1 = fc_Moment; 
        towc1 = towc; 
        f_gravity1 = f_gravity; 
        f_inertial1 = f_inertial; 
        f_gravity_Moment1 = f_gravity_Moment; 
        f_inertial_Moment1 = f_inertial_Moment; 
        NF_moment1 = NF_moment; 
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        vv = 4;     processes;   
        Moment2 = Momentt;   
        Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;  
        Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight; 
        Normal_Forces2 = Normal_Forces; 
        qm2 = qm; 
        Force2 = Force;  
        fc2 = fc; 
        fc_Moment2 = fc_Moment; 
        towc2 = towc; 
        f_gravity2 = f_gravity; 
        f_inertial2 = f_inertial; 
        f_gravity_Moment2 = f_gravity_Moment; 
        f_inertial_Moment2 = f_inertial_Moment; 
        NF_moment2 = NF_moment; 
         
        vv = 5;     processes;  
        Moment3 = Momentt;  
        Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;  
        Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight; 
        Normal_Forces3 = Normal_Forces;  
        qm3 = qm; 
        Force3 = Force;  
        fc3 = fc; 
        fc_Moment3 = fc_Moment; 
        towc3 = towc; 
        f_gravity3 = f_gravity; 
        f_inertial3 = f_inertial; 
        f_gravity_Moment3 = f_gravity_Moment; 
        f_inertial_Moment3 = f_inertial_Moment; 
        NF_moment3 = NF_moment; 
         
 elseif which == 2, 
        close all; 
        Surface_geometry = 'F';  % GG1 
        Touch = [1 1 1 1]'; 
         
        Rover_5                   % q= Conf_5; q= Conf_0; 
 
        vv = 2;  processes;  
        Moment1 = Momentt;  
        Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront; 
        Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight; 
        Normal_Forces1 = Normal_Forces; 
        qm1 = qm; 
        Force1 = Force;  
        fc1 = fc; 
        fc_Moment1 = fc_Moment; 
        towc1 = towc; 
        f_gravity1 = f_gravity; 
        f_inertial1 = f_inertial; 
        f_gravity_Moment1 = f_gravity_Moment; 
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        f_inertial_Moment1 = f_inertial_Moment; 
        NF_moment1 = NF_moment; 
         
        vv = 4;     processes;  
        Moment2 = Momentt; 
        Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;  
        Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight; 
        Normal_Forces2 = Normal_Forces;  
        qm2 = qm; 
        Force2 = Force;  
        fc2 = fc; 
        fc_Moment2 = fc_Moment; 
        towc2 = towc; 
        f_gravity2 = f_gravity; 
        f_inertial2 = f_inertial; 
        f_gravity_Moment2 = f_gravity_Moment; 
        f_inertial_Moment2 = f_inertial_Moment; 
        NF_moment2 = NF_moment; 
         
        vv = 5;     processes;   
        Moment3 = Momentt;  
        Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;  
        Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight; 
        Normal_Forces3 = Normal_Forces;  
        qm3 = qm; 
        Force3 = Force;  
        fc3 = fc; 
        fc_Moment3 = fc_Moment; 
        towc3 = towc; 
        f_gravity3 = f_gravity; 
        f_inertial3 = f_inertial; 
        f_gravity_Moment3 = f_gravity_Moment; 
        f_inertial_Moment3 = f_inertial_Moment; 
        NF_moment3 = NF_moment; 
         
 elseif which == 3, 
        close all; 
        Surface_geometry = 'F';  % GG1 
        Touch = [1 1 1 1]'; 
         
        Rover_7                   % q= Conf_6; q= Conf_0; 
         
        vv = 2;  processes;   
        Moment1 = Momentt;  
        Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront; 
        Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight; 
        Normal_Forces1 = Normal_Forces; 
        qm1 = qm; 
        Force1 = Force;  
        fc1 = fc; 
        fc_Moment1 = fc_Moment; 
        towc1 = towc; 
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        f_gravity1 = f_gravity; 
        f_inertial1 = f_inertial; 
        f_gravity_Moment1 = f_gravity_Moment; 
        f_inertial_Moment1 = f_inertial_Moment; 
        NF_moment1 = NF_moment; 
         
        vv = 4;     processes;   
        Moment2 = Momentt;  
        Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;  
        Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight; 
        Normal_Forces2 = Normal_Forces;  
        qm2 = qm; 
        Force2 = Force;  
        fc2 = fc; 
        fc_Moment2 = fc_Moment; 
        towc2 = towc; 
        f_gravity2 = f_gravity; 
        f_inertial2 = f_inertial; 
        f_gravity_Moment2 = f_gravity_Moment; 
        f_inertial_Moment2 = f_inertial_Moment; 
        NF_moment2 = NF_moment; 
         
        vv = 5;     processes;    
        Moment3 = Momentt; 
        Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;  
        Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight; 
        Normal_Forces3 = Normal_Forces;  
        qm3 = qm; 
        Force3 = Force;  
        fc3 = fc; 
        fc_Moment3 = fc_Moment; 
        towc3 = towc; 
        f_gravity3 = f_gravity; 
        f_inertial3 = f_inertial; 
        f_gravity_Moment3 = f_gravity_Moment; 
        f_inertial_Moment3 = f_inertial_Moment; 
        NF_moment3 = NF_moment; 
         
 elseif which == 4, 
        close all; 
        Surface_geometry = 'F';  % GG1 
        Touch = [1 1 1 1]'; 
         
        Rover_8                   % q= Conf_7; q= Conf_0; 
         
        vv = 2;  processes;   
        Moment1 = Momentt;  
        Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront; 
        Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight; 
        Normal_Forces1 = Normal_Forces; 
        qm1 = qm; 
        Force1 = Force;  
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        fc1 = fc; 
        fc_Moment1 = fc_Moment; 
        towc1 = towc; 
        f_gravity1 = f_gravity; 
        f_inertial1 = f_inertial; 
        f_gravity_Moment1 = f_gravity_Moment; 
        f_inertial_Moment1 = f_inertial_Moment; 
        NF_moment1 = NF_moment; 
         
        vv = 4;     processes;  
        Moment2 = Momentt; 
        Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;  
        Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight; 
        Normal_Forces2 = Normal_Forces;  
        qm2 = qm; 
        Force2 = Force;  
        fc2 = fc; 
        fc_Moment2 = fc_Moment; 
        towc2 = towc; 
        f_gravity2 = f_gravity; 
        f_inertial2 = f_inertial; 
        f_gravity_Moment2 = f_gravity_Moment; 
        f_inertial_Moment2 = f_inertial_Moment; 
        NF_moment2 = NF_moment; 
         
        vv = 5;     processes;    
        Moment3 = Momentt;  
        Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;  
        Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight; 
        Normal_Forces3 = Normal_Forces;  
        qm3 = qm; 
        Force3 = Force;  
        fc3 = fc; 
        fc_Moment3 = fc_Moment; 
        towc3 = towc; 
        f_gravity3 = f_gravity; 
        f_inertial3 = f_inertial; 
        f_gravity_Moment3 = f_gravity_Moment; 
        f_inertial_Moment3 = f_inertial_Moment; 
        NF_moment3 = NF_moment; 
         
 elseif which == 5, 
        close all; 
        Surface_geometry = 'S'; % GG2 
        Touch = [1 0 1 1]'; 
         
        Rover_6                   % q= Conf_5; q= Conf_5; 
  
        vv = 2;  processes;   
        Moment1 = Momentt;  
        Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront; 
        Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight; 
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        Normal_Forces1 = Normal_Forces; 
        qm1 = qm; 
        Force1 = Force;  
        fc1 = fc; 
        fc_Moment1 = fc_Moment; 
        towc1 = towc; 
        f_gravity1 = f_gravity; 
        f_inertial1 = f_inertial; 
        f_gravity_Moment1 = f_gravity_Moment; 
        f_inertial_Moment1 = f_inertial_Moment; 
        NF_moment1 = NF_moment; 
         
        vv = 4;     processes;   
        Moment2 = Momentt;  
        Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;  
        Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight; 
        Normal_Forces2 = Normal_Forces;  
        qm2 = qm; 
        Force2 = Force;  
        fc2 = fc; 
        fc_Moment2 = fc_Moment; 
        towc2 = towc; 
        f_gravity2 = f_gravity; 
        f_inertial2 = f_inertial; 
        f_gravity_Moment2 = f_gravity_Moment; 
        f_inertial_Moment2 = f_inertial_Moment; 
        NF_moment2 = NF_moment; 
         
        vv = 5;     processes;   
        Moment3 = Momentt;  
        Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;  
        Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight; 
        Normal_Forces3 = Normal_Forces;  
        qm3 = qm; 
        Force3 = Force;  
        fc3 = fc; 
        fc_Moment3 = fc_Moment; 
        towc3 = towc; 
        f_gravity3 = f_gravity; 
        f_inertial3 = f_inertial; 
        f_gravity_Moment3 = f_gravity_Moment; 
        f_inertial_Moment3 = f_inertial_Moment; 
        NF_moment3 = NF_moment; 
         
 elseif which == 6, 
        close all; 
        Surface_geometry = 'S';   % GG2 
        Touch = [1 0 1 1]'; 
 
        Rover_1                   % q= Conf_0; q= Conf_1; 
        vv = 2;  processes;  
        Moment1 = Momentt;  
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        Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront; 
        Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight; 
        Normal_Forces1 = Normal_Forces; 
        qm1 = qm; 
        Force1 = Force;  
        fc1 = fc; 
        fc_Moment1 = fc_Moment; 
        towc1 = towc; 
        f_gravity1 = f_gravity; 
        f_inertial1 = f_inertial; 
        f_gravity_Moment1 = f_gravity_Moment; 
        f_inertial_Moment1 = f_inertial_Moment; 
        NF_moment1 = NF_moment; 
         
        Rover_10                   % q= Conf_0; q= Conf_9; 
        vv = 2;     processes;  
        Moment2 = Momentt; 
        Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;  
        Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight; 
        Normal_Forces2 = Normal_Forces;  
        qm2 = qm; 
        Force2 = Force;  
        fc2 = fc; 
        fc_Moment2 = fc_Moment; 
        towc2 = towc; 
        f_gravity2 = f_gravity; 
        f_inertial2 = f_inertial; 
        f_gravity_Moment2 = f_gravity_Moment; 
        f_inertial_Moment2 = f_inertial_Moment; 
        NF_moment2 = NF_moment; 
         
        Rover_9                    % q= Conf_0; q= Conf_8; 
        vv = 2;     processes;   
        Moment3 = Momentt;  
        Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;  
        Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight; 
        Normal_Forces3 = Normal_Forces;  
        qm3 = qm; 
        Force3 = Force;  
        fc3 = fc; 
        fc_Moment3 = fc_Moment; 
        towc3 = towc; 
        f_gravity3 = f_gravity; 
        f_inertial3 = f_inertial; 
        f_gravity_Moment3 = f_gravity_Moment; 
        f_inertial_Moment3 = f_inertial_Moment; 
        NF_moment3 = NF_moment; 
         
   elseif which == 7, 
        close all; 
        Surface_geometry = 'I';   % GG9 
        Touch = [1 1 1 1]'; 
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        Rover_1                   % q= Conf_0; q= Conf_1; 
        vv = 2.5;  processes;  
        Moment1 = Momentt;  
        Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront; 
        Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight; 
        Normal_Forces1 = Normal_Forces; 
        qm1 = qm; 
        Force1 = Force;  
        fc1 = fc; 
        fc_Moment1 = fc_Moment; 
        towc1 = towc; 
        f_gravity1 = f_gravity; 
        f_inertial1 = f_inertial; 
        f_gravity_Moment1 = f_gravity_Moment; 
        f_inertial_Moment1 = f_inertial_Moment; 
        NF_moment1 = NF_moment; 
                 
        Rover_12                   % q= Conf_0; q= Conf_11; 
        vv = 2.5;     processes;  
        Moment2 = Momentt; 
        Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;  
        Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight; 
        Normal_Forces2 = Normal_Forces;  
        qm2 = qm; 
        Force2 = Force;  
        fc2 = fc; 
        fc_Moment2 = fc_Moment; 
        towc2 = towc; 
        f_gravity2 = f_gravity; 
        f_inertial2 = f_inertial; 
        f_gravity_Moment2 = f_gravity_Moment; 
        f_inertial_Moment2 = f_inertial_Moment; 
        NF_moment2 = NF_moment; 
              
        Rover_11                   % q= Conf_0; q= Conf_10; 
        vv = 2.5;     processes;  
        Moment3 = Momentt; 
        Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;  
        Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight; 
        Normal_Forces3 = Normal_Forces;  
        qm3 = qm; 
        Force3 = Force;  
        fc3 = fc; 
        fc_Moment3 = fc_Moment; 
        towc3 = towc; 
        f_gravity3 = f_gravity; 
        f_inertial3 = f_inertial; 
        f_gravity_Moment3 = f_gravity_Moment; 
        f_inertial_Moment3 = f_inertial_Moment; 
        NF_moment3 = NF_moment; 
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    elseif which == 8, 
        close all; 
        Surface_geometry = 'FI';  % GG5 
        Touch = [1 1 1 1]'; 
        Rover_1                   % q= Conf_0; q= Conf_1; 
         
        vv = 0.5;  processes;   
        Moment1 = Momentt; 
        Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront; 
        Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight; 
        Normal_Forces1 = Normal_Forces; 
        qm1 = qm; 
        Force1 = Force;  
        fc1 = fc; 
        fc_Moment1 = fc_Moment; 
        towc1 = towc; 
        f_gravity1 = f_gravity; 
        f_inertial1 = f_inertial; 
        f_gravity_Moment1 = f_gravity_Moment; 
        f_inertial_Moment1 = f_inertial_Moment; 
        NF_moment1 = NF_moment; 
         
        Rover_14                   % q= Conf_13; q= Conf_13; 
        vv = 0.5;     processes;   
        Moment2 = Momentt;  
        Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;  
        Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight; 
        Normal_Forces2 = Normal_Forces;  
        qm2 = qm; 
        Force2 = Force;  
        fc2 = fc; 
        fc_Moment2 = fc_Moment; 
        towc2 = towc; 
        f_gravity2 = f_gravity; 
        f_inertial2 = f_inertial; 
        f_gravity_Moment2 = f_gravity_Moment; 
        f_inertial_Moment2 = f_inertial_Moment; 
        NF_moment2 = NF_moment; 
         
        Rover_13                   % q= Conf_12; q= Conf_12; 
        vv = 0.5;     processes;   
        Moment3 = Momentt;  
        Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;  
        Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight; 
        Normal_Forces3 = Normal_Forces;  
        qm3 = qm; 
        Force3 = Force;  
        fc3 = fc; 
        fc_Moment3 = fc_Moment; 
        towc3 = towc; 
        f_gravity3 = f_gravity; 
        f_inertial3 = f_inertial; 
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        f_gravity_Moment3 = f_gravity_Moment; 
        f_inertial_Moment3 = f_inertial_Moment; 
        NF_moment3 = NF_moment; 
         
    elseif which == 9, 
        close all; 
        Surface_geometry = 'D';    % GG7 
        Touch = [1 1 1 1]'; 
        Rover_14                   % q= Conf_15; q= Conf_15; 
         
        vv = 1;  processes;   
        Moment1 = Momentt; 
        Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront; 
        Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight; 
        Normal_Forces1 = Normal_Forces; 
        qm1 = qm; 
        Force1 = Force;  
        fc1 = fc; 
        fc_Moment1 = fc_Moment; 
        towc1 = towc; 
        f_gravity1 = f_gravity; 
        f_inertial1 = f_inertial; 
        f_gravity_Moment1 = f_gravity_Moment; 
        f_inertial_Moment1 = f_inertial_Moment; 
        NF_moment1 = NF_moment; 
         
        Rover_14                   % q= Conf_15; q= Conf_15; 
        vv = 2;     processes;   
        Moment2 = Momentt;  
        Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;  
        Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight; 
        Normal_Forces2 = Normal_Forces;  
        qm2 = qm; 
        Force2 = Force;  
        fc2 = fc; 
        fc_Moment2 = fc_Moment; 
        towc2 = towc; 
        f_gravity2 = f_gravity; 
        f_inertial2 = f_inertial; 
        f_gravity_Moment2 = f_gravity_Moment; 
        f_inertial_Moment2 = f_inertial_Moment; 
        NF_moment2 = NF_moment; 
         
        Rover_14                   % q= Conf_15; q= Conf_15; 
        vv = 3;     processes;   
        Moment3 = Momentt;  
        Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;  
        Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight; 
        Normal_Forces3 = Normal_Forces;  
        qm3 = qm; 
        Force3 = Force;  
        fc3 = fc; 



 

 

241

        fc_Moment3 = fc_Moment; 
        towc3 = towc; 
        f_gravity3 = f_gravity; 
        f_inertial3 = f_inertial; 
        f_gravity_Moment3 = f_gravity_Moment; 
        f_inertial_Moment3 = f_inertial_Moment; 
        NF_moment3 = NF_moment; 
         
         
     elseif which == 10, 
        close all; 
        Surface_geometry = 'U';    % GG11 
        Touch = [1 1 1 1]'; 
        Rover_16                   % q= Conf_0; q= Conf_14; 
         
        vv = 0.05;  processes;   
        Moment1 = Momentt; 
        Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront; 
        Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight; 
        Normal_Forces1 = Normal_Forces; 
        qm1 = qm; 
        Force1 = Force;  
        fc1 = fc; 
        fc_Moment1 = fc_Moment; 
        towc1 = towc; 
        f_gravity1 = f_gravity; 
        f_inertial1 = f_inertial; 
        f_gravity_Moment1 = f_gravity_Moment; 
        f_inertial_Moment1 = f_inertial_Moment; 
        NF_moment1 = NF_moment; 
         
        Rover_16                   % q= Conf_0; q= Conf_14; 
        vv = 0.05;     processes;   
        Moment2 = Momentt;  
        Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;  
        Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight; 
        Normal_Forces2 = Normal_Forces;  
        qm2 = qm; 
        Force2 = Force;  
        fc2 = fc; 
        fc_Moment2 = fc_Moment; 
        towc2 = towc; 
        f_gravity2 = f_gravity; 
        f_inertial2 = f_inertial; 
        f_gravity_Moment2 = f_gravity_Moment; 
        f_inertial_Moment2 = f_inertial_Moment; 
        NF_moment2 = NF_moment; 
     
        Rover_16                   % q= Conf_0; q= Conf_14; 
        vv = 1;     processes;   
        Moment3 = Momentt; 
        Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;  
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        Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight; 
        Normal_Forces3 = Normal_Forces; 
        qm3 = qm; 
        Force3 = Force;  
        fc3 = fc; 
        fc_Moment3 = fc_Moment; 
        towc3 = towc; 
        f_gravity3 = f_gravity; 
        f_inertial3 = f_inertial; 
        f_gravity_Moment3 = f_gravity_Moment; 
        f_inertial_Moment3 = f_inertial_Moment; 
        NF_moment3 = NF_moment; 
         
    elseif which == 11, 
        close all; 
  break; 
 end 
     
%______________________________ 
% Figures of Results 
% 
  
 figure(1) 
    subplot(3,1,1) 
    hold on 
    plot(t, qm1(1,1:np)*180/pi, 'k-', 'linewidth',2) 
    plot(t, qm2(1,1:np)*180/pi, 'g-', 'linewidth',2) 
    plot(t, qm3(1,1:np)*180/pi, 'b-', 'linewidth',2) 
    title('platform orientation angles w/2 universal frame') 
    ylabel('Psi (deg)') 
    grid 
    hold off 
     
    subplot(3,1,2) 
    hold on 
    plot(t, qm1(2,1:np)*180/pi, 'k-', 'linewidth',2) 
    plot(t, qm2(2,1:np)*180/pi, 'g-', 'linewidth',2) 
    plot(t, qm3(2,1:np)*180/pi, 'b-', 'linewidth',2) 
    ylabel('Phi (deg)') 
    grid 
    hold off 
 
    subplot(3,1,3) 
    hold on 
    plot(t, qm1(3,1:np)*180/pi, 'k', 'linewidth',2) 
    plot(t, qm2(3,1:np)*180/pi, 'g', 'linewidth',2) 
    plot(t, qm3(3,1:np)*180/pi, 'b', 'linewidth',2) 
    xlabel('Time (s)'); 
    ylabel('Theta (deg)') 
    grid 
    hold off 
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 figure(2)  
     
    subplot(4,1,1) 
    hold on 
    %axis([.01 np-1 -1 30]) 
    plot(t, Normal_Forces1(1,1:np), 'k-', 'linewidth',2) 
    plot(t, Normal_Forces2(1,1:np), 'g-', 'linewidth',2) 
    plot(t, Normal_Forces3(1,1:np), 'b-', 'linewidth',2) 
    title('Normal force exerted on contact wheels')  
    ylabel('FnRF') 
    grid 
    hold off 
     
    subplot(4,1,2) 
    hold on 
    %axis([.01 np-1 -1 15]) 
    plot(t, Normal_Forces1(2,1:np), 'k-', 'linewidth',2) 
    plot(t, Normal_Forces2(2,1:np), 'g-', 'linewidth',2) 
    plot(t, Normal_Forces3(2,1:np), 'b-', 'linewidth',2) 
    ylabel('FnRR') 
    grid 
    hold off 
     
    subplot(4,1,3) 
    hold on 
    %axis([.01 np-1 -1 30]) 
    plot(t, Normal_Forces1(3,1:np), 'k-', 'linewidth',2) 
    plot(t, Normal_Forces2(3,1:np), 'g-', 'linewidth',2) 
    plot(t, Normal_Forces3(3,1:np), 'b-', 'linewidth',2) 
    ylabel('FnLF') 
    grid 
    hold off 
      
    subplot(4,1,4) 
    hold on 
    %axis([.01 np-1 -1 15]) 
    plot(t, Normal_Forces1(4,1:np), 'k-', 'linewidth',2) 
    plot(t, Normal_Forces2(4,1:np), 'g-', 'linewidth',2) 
    plot(t, Normal_Forces3(4,1:np), 'b-', 'linewidth',2) 
    xlabel('Time (s)'); 
    ylabel('FnLR') 
    grid 
    hold off 
         
 figure(3)  
     
    hold on 
    plot(t, Tow_CRear1(1:np),'k--', 'linewidth',2) 
    plot(t, Tow_CRear2(1:np),'g--', 'linewidth',2) 
    plot(t, Tow_CRear3(1:np),'b--', 'linewidth',2) 
         
    plot(t, Moment1(3,1:np),'k-', 'linewidth',2) 
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    plot(t, Moment2(3,1:np),'g-', 'linewidth',2) 
    plot(t, Moment3(3,1:np),'b-', 'linewidth',2) 
 
    plot(t, Tow_CFront1(1:np),'k--', 'linewidth',2) 
    plot(t, Tow_CFront2(1:np),'g--', 'linewidth',2) 
    plot(t, Tow_CFront3(1:np),'b--', 'linewidth',2) 
     
    title('exerted Moment about zu-axis of universal frame') 
    ylabel('TU(3) (N.m)') 
    xlabel('Time (s)'); 
    grid 
    hold off 
         
 figure(4)  
         
    hold on 
    plot(t, Tow_CLeft1(1:np),'k--', 'linewidth',2) 
    plot(t, Tow_CLeft2(1:np),'g--', 'linewidth',2) 
    plot(t, Tow_CLeft3(1:np),'b--', 'linewidth',2) 
 
    plot(t, Moment1(2,1:np),'k-', 'linewidth',2) 
    plot(t, Moment2(2,1:np),'g-', 'linewidth',2) 
    plot(t, Moment3(2,1:np),'b-', 'linewidth',2) 
 
    plot(t, Tow_CRight1(1:np),'k--', 'linewidth',2) 
    plot(t, Tow_CRight2(1:np),'g--', 'linewidth',2) 
    plot(t, Tow_CRight3(1:np),'b--', 'linewidth',2) 
 
    title('exerted Moment about yu-axis of universal frame') 
    ylabel('TU(2) (N.m)') 
    xlabel('Time (s)'); 
    grid 
    hold off 
     
 figure(5) 
    subplot(3,1,1) 
    hold on 
    plot(t, Force1(1,1:np), 'k-', 'linewidth',2) 
    plot(t, Force2(1,1:np), 'g-', 'linewidth',2) 
    plot(t, Force3(1,1:np), 'b-', 'linewidth',2) 
    title('Universal force (N)') 
    ylabel('F_X_u') 
    grid 
    hold off 
     
    subplot(3,1,2) 
    hold on 
    plot(t, Force1(2,1:np), 'k-', 'linewidth',2) 
    plot(t, Force2(2,1:np), 'g-', 'linewidth',2) 
    plot(t, Force3(2,1:np), 'b-', 'linewidth',2) 
    ylabel('F_Y_u') 
    grid 



 

 

245

    hold off 
 
    subplot(3,1,3) 
    hold on 
    plot(t, Force1(3,1:np), 'k', 'linewidth',2) 
    plot(t, Force2(3,1:np), 'g', 'linewidth',2) 
    plot(t, Force3(3,1:np), 'b', 'linewidth',2) 
    xlabel('Time (s)'); 
    ylabel('F_Z_u') 
    grid 
    hold off 
     
 figure(6) 
    subplot(3,1,1) 
    hold on 
    plot(t, fc1(1,1:np), 'k-', 'linewidth',2) 
    plot(t, fc2(1,1:np), 'g-', 'linewidth',2) 
    plot(t, fc3(1,1:np), 'b-', 'linewidth',2) 
    title('Universal fc (N)') 
    ylabel('fc_X_u') 
    grid 
    hold off 
     
    subplot(3,1,2) 
    hold on 
    plot(t, fc1(2,1:np), 'k-', 'linewidth',2) 
    plot(t, fc2(2,1:np), 'g-', 'linewidth',2) 
    plot(t, fc3(2,1:np), 'b-', 'linewidth',2) 
    ylabel('fc_Y_u') 
    grid 
    hold off 
 
    subplot(3,1,3) 
    hold on 
    plot(t, fc1(3,1:np), 'k', 'linewidth',2) 
    plot(t, fc2(3,1:np), 'g', 'linewidth',2) 
    plot(t, fc3(3,1:np), 'b', 'linewidth',2) 
    xlabel('Time (s)'); 
    ylabel('fc_Z_u') 
    grid 
    hold off 
  
 figure(7) 
    subplot(3,1,1) 
    hold on 
    plot(t, fc_Moment1(1,1:np), 'k-', 'linewidth',2) 
    plot(t, fc_Moment2(1,1:np), 'g-', 'linewidth',2) 
    plot(t, fc_Moment3(1,1:np), 'b-', 'linewidth',2) 
    title('Universal fc Moment (N.m)') 
    ylabel('fc Moment_X_u') 
    grid 
    hold off 
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    subplot(3,1,2) 
    hold on 
    plot(t, fc_Moment1(2,1:np), 'k-', 'linewidth',2) 
    plot(t, fc_Moment2(2,1:np), 'g-', 'linewidth',2) 
    plot(t, fc_Moment3(2,1:np), 'b-', 'linewidth',2) 
    ylabel('fc Moment_Y_u') 
    grid 
    hold off 
 
    subplot(3,1,3) 
    hold on 
    plot(t, fc_Moment1(3,1:np), 'k', 'linewidth',2) 
    plot(t, fc_Moment2(3,1:np), 'g', 'linewidth',2) 
    plot(t, fc_Moment3(3,1:np), 'b', 'linewidth',2) 
    xlabel('Time (s)'); 
    ylabel('fc Moment_z_u') 
    grid 
    hold off     
     
 figure(8) 
    subplot(3,1,1) 
    hold on 
    plot(t, towc1(1,1:np), 'k-', 'linewidth',2) 
    plot(t, towc2(1,1:np), 'g-', 'linewidth',2) 
    plot(t, towc3(1,1:np), 'b-', 'linewidth',2) 
    title('Universal towc (N.m)') 
    ylabel('towc_x_u') 
    grid 
    hold off 
     
    subplot(3,1,2) 
    hold on 
    plot(t, towc1(2,1:np), 'k-', 'linewidth',2) 
    plot(t, towc2(2,1:np), 'g-', 'linewidth',2) 
    plot(t, towc3(2,1:np), 'b-', 'linewidth',2) 
    ylabel('towc_y_u') 
    grid 
    hold off 
 
    subplot(3,1,3) 
    hold on 
    plot(t, towc1(3,1:np), 'k', 'linewidth',2) 
    plot(t, towc2(3,1:np), 'g', 'linewidth',2) 
    plot(t, towc3(3,1:np), 'b', 'linewidth',2) 
    xlabel('Time (s)'); 
    ylabel('towc_z_u') 
    grid 
    hold off         
     
     
figure(9) 
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    subplot(3,1,1) 
    hold on 
    plot(t, f_gravity1(1,1:np), 'k-', 'linewidth',2) 
    plot(t, f_gravity2(1,1:np), 'g-', 'linewidth',2) 
    plot(t, f_gravity3(1,1:np), 'b-', 'linewidth',2) 
    title('Universal gravity force resulted from center of mass of links(N)') 
    ylabel('Gravity force_x_u') 
    grid 
    hold off 
     
    subplot(3,1,2) 
    hold on 
    plot(t, f_gravity1(2,1:np), 'k-', 'linewidth',2) 
    plot(t, f_gravity2(2,1:np), 'g-', 'linewidth',2) 
    plot(t, f_gravity3(2,1:np), 'b-', 'linewidth',2) 
    ylabel('Gravity force_y_u') 
    grid 
    hold off 
 
    subplot(3,1,3) 
    hold on 
    plot(t, f_gravity1(3,1:np), 'k', 'linewidth',2) 
    plot(t, f_gravity2(3,1:np), 'g', 'linewidth',2) 
    plot(t, f_gravity3(3,1:np), 'b', 'linewidth',2) 
    xlabel('Time (s)'); 
    ylabel('Gravity force_z_u') 
    grid 
    hold off      
     
 figure(10) 
    subplot(3,1,1) 
    hold on 
    plot(t, f_inertial1(1,1:np), 'k-', 'linewidth',2) 
    plot(t, f_inertial2(1,1:np), 'g-', 'linewidth',2) 
    plot(t, f_inertial3(1,1:np), 'b-', 'linewidth',2) 
    title('Universal inertial force resulted from center of mass of links(N)') 
    ylabel('Inertial force_x_u') 
    grid 
    hold off 
     
    subplot(3,1,2) 
    hold on 
    plot(t, f_inertial1(2,1:np), 'k-', 'linewidth',2) 
    plot(t, f_inertial2(2,1:np), 'g-', 'linewidth',2) 
    plot(t, f_inertial3(2,1:np), 'b-', 'linewidth',2) 
    ylabel('Inertial force_y_u') 
    grid 
    hold off 
 
    subplot(3,1,3) 
    hold on 
    plot(t, f_inertial1(3,1:np), 'k', 'linewidth',2) 
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    plot(t, f_inertial2(3,1:np), 'g', 'linewidth',2) 
    plot(t, f_inertial3(3,1:np), 'b', 'linewidth',2) 
    xlabel('Time (s)'); 
    ylabel('Inertial force_z_u') 
    grid 
    hold off      
     
figure(11) 
    subplot(3,1,1) 
    hold on 
    plot(t, f_gravity_Moment1(1,1:np), 'k-', 'linewidth',2) 
    plot(t, f_gravity_Moment2(1,1:np), 'g-', 'linewidth',2) 
    plot(t, f_gravity_Moment3(1,1:np), 'b-', 'linewidth',2) 
    title('Universal Moment of gravity force resulted from center of mass of links(N.m)') 
    ylabel('Gravity Moment_x_u') 
    grid 
    hold off 
     
    subplot(3,1,2) 
    hold on 
    plot(t, f_gravity_Moment1(2,1:np), 'k-', 'linewidth',2) 
    plot(t, f_gravity_Moment2(2,1:np), 'g-', 'linewidth',2) 
    plot(t, f_gravity_Moment3(2,1:np), 'b-', 'linewidth',2) 
    ylabel('Gravity Moment_y_u') 
    grid 
    hold off 
 
    subplot(3,1,3) 
    hold on 
    plot(t, f_gravity_Moment1(3,1:np), 'k', 'linewidth',2) 
    plot(t, f_gravity_Moment2(3,1:np), 'g', 'linewidth',2) 
    plot(t, f_gravity_Moment3(3,1:np), 'b', 'linewidth',2) 
    xlabel('Time (s)'); 
    ylabel('Gravity Moment_z_u') 
    grid 
    hold off   
   
 figure(12) 
    subplot(3,1,1) 
    hold on 
    plot(t, f_inertial_Moment1(1,1:np), 'k-', 'linewidth',2) 
    plot(t, f_inertial_Moment2(1,1:np), 'g-', 'linewidth',2) 
    plot(t, f_inertial_Moment3(1,1:np), 'b-', 'linewidth',2) 
    title('Universal Moment of inertial force resulted from center of mass of links(N.m)') 
    ylabel('Inertial Moment_x_u') 
    grid 
    hold off 
     
    subplot(3,1,2) 
    hold on 
    plot(t, f_inertial_Moment1(2,1:np), 'k-', 'linewidth',2) 
    plot(t, f_inertial_Moment2(2,1:np), 'g-', 'linewidth',2) 
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    plot(t, f_inertial_Moment3(2,1:np), 'b-', 'linewidth',2) 
    ylabel('Inertial Moment_y_u') 
    grid 
    hold off 
 
    subplot(3,1,3) 
    hold on 
    plot(t, f_inertial_Moment1(3,1:np), 'k', 'linewidth',2) 
    plot(t, f_inertial_Moment2(3,1:np), 'g', 'linewidth',2) 
    plot(t, f_inertial_Moment3(3,1:np), 'b', 'linewidth',2) 
    xlabel('Time (s)'); 
    ylabel('Inertial Moment_z_u') 
    grid 
    hold off      
     
     
 figure(13) 
    subplot(3,1,1) 
    hold on 
    plot(t, NF_moment1(1,1:np), 'k-', 'linewidth',2) 
    plot(t, NF_moment2(1,1:np), 'g-', 'linewidth',2) 
    plot(t, NF_moment3(1,1:np), 'b-', 'linewidth',2) 
    title('Universal moments resulted from normal forces (N.m)') 
    ylabel('NF moment_x_u') 
    grid 
    hold off 
     
    subplot(3,1,2) 
    hold on 
    plot(t, NF_moment1(2,1:np), 'k-', 'linewidth',2) 
    plot(t, NF_moment2(2,1:np), 'g-', 'linewidth',2) 
    plot(t, NF_moment3(2,1:np), 'b-', 'linewidth',2) 
    ylabel('NF moment_y_u') 
    grid 
    hold off 
 
    subplot(3,1,3) 
    hold on 
    plot(t, NF_moment1(3,1:np), 'k', 'linewidth',2) 
    plot(t, NF_moment2(3,1:np), 'g', 'linewidth',2) 
    plot(t, NF_moment3(3,1:np), 'b', 'linewidth',2) 
    xlabel('Time (s)'); 
    ylabel('NF moment_z_u') 
    grid 
    hold off      
     
end     
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Processes.m 
 

 
    n = numrows(dh_dyn); 
    d = dh_dyn(2:n,2); 
    a = dh_dyn(2:n,3); 
alpha = dh_dyn(2:n,4); 
    r = a(4);      % radius of wheel 
     
    TOL = 0.00001;  % tolerance value 
%___________________   
% create time vector 
% 
    t  = [0:1:200]; 
    np = numcols(t); 
 
%_____________________ 
% trajectory of joints 
% 
[q_RF,qd_RF,qdd_RF] = jtraj(q0(:,1), q1(:,1), t); % joint coordinate trajectory of right front leg 
[q_RR,qd_RR,qdd_RR] = jtraj(q0(:,2), q1(:,2), t); % joint coordinate trajectory of right rear leg 
[q_LF,qd_LF,qdd_LF] = jtraj(q0(:,3), q1(:,3), t); % joint coordinate trajectory of left front leg 
[q_LR,qd_LR,qdd_LR] = jtraj(q0(:,4), q1(:,4), t); % joint coordinate trajectory of left rear leg 
 
if Locomotion_Case == 'ST' 
     
[At4RF, At4RR, At4LF, At4LR, Vt4RF, Vt4RR, Vt4LF, Vt4LR, d_4RF, d_4RR, d_4LF, d_4LR,... 
  Thetadd_RF, Thetadd_RR, Thetadd_LF, Thetadd_LR, Thetad_RF, Thetad_RR, Thetad_LF, 
Thetad_LR,... 
  Theta_RF, Theta_RR, Theta_LF, Theta_LR, tdelay_R, tdelay_L] = locomotion_ST(vv, t, a, q0); 
 
elseif Locomotion_Case == 'DN' 
     
[At4RF, At4RR, At4LF, At4LR, Vt4RF, Vt4RR, Vt4LF, Vt4LR, d_4RF, d_4RR, d_4LF, d_4LR,... 
  Thetadd_RF, Thetadd_RR, Thetadd_LF, Thetadd_LR, Thetad_RF, Thetad_RR, Thetad_LF, 
Thetad_LR,... 
  Theta_RF, Theta_RR, Theta_LF, Theta_LR, tdelay_R, tdelay_L] = locomotion_DN(Touch, vv, t, a, q0); 
end 
 
q_RF(:,4) = Theta_RF;  qd_RF(:,4) = Thetad_RF;    qdd_RF(:,4) = Thetadd_RF; 
q_RR(:,4) = Theta_RR;  qd_RR(:,4) = Thetad_RR;    qdd_RR(:,4) = Thetadd_RR; 
q_LF(:,4) = Theta_LF;  qd_LF(:,4) = Thetad_LF;    qdd_LF(:,4) = Thetadd_LF; 
q_LR(:,4) = Theta_LR;  qd_LR(:,4) = Thetad_LR;    qdd_LR(:,4) = Thetadd_LR; 
 
q_RF = q_RF';  qd_RF = qd_RF';    qdd_RF = qdd_RF'; 
q_RR = q_RR';  qd_RR = qd_RR';    qdd_RR = qdd_RR'; 
q_LF = q_LF';  qd_LF = qd_LF';    qdd_LF = qdd_LF'; 
q_LR = q_LR';  qd_LR = qd_LR';    qdd_LR = qdd_LR'; 
%___________________________________________ 
%________________ 
% Ground geometry 
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% 
 
if Surface_geometry == 'F' 
     
[input_RF, input_RR, input_LF, input_LR, ... 
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ... 
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG1(t, tdelay_R, tdelay_L, a, q0); 
 
elseif Surface_geometry == 'S' 
     
[input_RF, input_RR, input_LF, input_LR, ... 
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ... 
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG2(t, tdelay_R, tdelay_L, a, q0); 
    
elseif Surface_geometry == 'I' 
     
[input_RF, input_RR, input_LF, input_LR, ... 
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ... 
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG9(t, tdelay_R, tdelay_L, a, q0); 
 
elseif Surface_geometry == 'FI' 
     
[input_RF, input_RR, input_LF, input_LR, ... 
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ... 
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG5(t, tdelay_R, tdelay_L, a, q0); 
 
elseif Surface_geometry == 'D' 
     
[input_RF, input_RR, input_LF, input_LR, ... 
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ... 
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG7(t, tdelay_R, tdelay_L, a, q0); 
 
elseif Surface_geometry == 'U' 
     
[input_RF, input_RR, input_LF, input_LR, ... 
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ... 
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG11(t, tdelay_R, tdelay_L, a, q0,... 
                                                           d_4RF, d_4RR, d_4LF, d_4LR); 
 
end 
 
theta_S_zs = [beta_SRF_zs; beta_SRR_zs; beta_SLF_zs; beta_SLR_zs]; 
theta_S_ys = [beta_SRF_ys; beta_SRR_ys; beta_SLF_ys; beta_SLR_ys]; 
 
%_______________________ 
% surface flatness check 
%  
   for p=1:np, 
         
        if (input_RF(p) == input_RR(p)) && (input_LF(p) == input_LR(p)) && (input_RF(p) == 
input_LF(p)) 
            Flat_surface(p) = 1; 
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        else 
            Flat_surface(p) = 0; 
        end 
   end 
 
%__________________ 
% Platform Attitute 
% 
 
Touches = []; 
 
qm=[]; 
                  
A_0R_0L =[1  0  0  0;... 
          0 -1  0  0;... 
          0  0 -1  0;... 
          0  0  0  1]; 
 
  q_RK = q_RF; 
  q_LK = q_LF; 
   
  input_RK = input_RF; 
  input_LK = input_LF; 
 
  B3_RK = beta_SRF_zs; 
  B3_LK = beta_SLF_zs; 
   
for p=1:np, 
                  
                 %______Pitch angle_____________    
                 theta_1R = q_RK(1, p); 
                 theta_1L = q_LK(1, p); 
                    
     Theta = (theta_1R - theta_1L)/2 + ... 
         asin((input_RR(p) - input_RF(p))/(-a(3)*sin(q_RF(3,p))+a(3)*sin(q_RR(3,p)))); 
      
 
                 %_______Yaw angle______________  
                 theta_4RK = q_RK(4, p); 
                 theta_4LK = q_LK(4, p); 
                                  
                 [A_0R_4RK] = Kinematic(q_RK(:,p)', d, a, alpha,  B3_RK(p),  Theta); 
                 [A_0L_4LK] = Kinematic(q_LK(:,p)', d, a, alpha, -B3_LK(p), -Theta); 
 
                 r_0R_4RK = A_0R_4RK(1:3, 4); 
                 A_0R_4LK = A_0R_0L * A_0L_4LK; 
                 r_0R_4LK = A_0R_4LK(1:3, 4); 
                
     Psi   = (-r*theta_4LK - r*theta_4RK)/(r_0R_4RK(3) - r_0R_4LK(3)); 
                  
                 %_______Roll angle angle______________ 
                 r_4RK_G_xU = -input_RK(p); 
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                 r_4LK_G_xU = -input_LK(p); 
                  
                 AA = r_0R_4RK(1) - r_0R_4LK(1); 
                 if abs(AA)< TOL 
                    AA = 0; 
                 end 
                  
                 BB = r_0R_4RK(3) - r_0R_4LK(3) - 4*d(1); 
                 if abs(BB)< TOL 
                    BB = 0; 
                 end 
                                        
                 if (BB) >= 0 
 
                        alfa = -atan2(AA,BB); 
                      
                 elseif (BB) < 0                      
                    if AA < 0 
                        alfa = -pi - atan2(AA,(BB)); 
                    elseif AA >= 0 
                        alfa = pi - atan2(AA,(BB)); 
                    end 
                 end                  
                     
     Phi = asin((-r_4RK_G_xU + r_4LK_G_xU)/... 
         (sqrt((r_0R_4RK(1) - r_0R_4LK(1))^2 + (r_0R_4RK(3) - r_0R_4LK(3) - 4*d(1))^2))) - alfa; 
  
     Ph= Phi *180/pi; 
      
            angle_0 = [Psi; Phi; Theta]; 
            qm      = [qm angle_0]; 
            
% 
% Contact Points in case of random surface 
% 
if Surface_geometry == 'U' 
   
  if Phi > 0 
      Touch_Legs = [1 0 1 1]'; 
  elseif Phi < 0  
      Touch_Legs = [1 1 1 0]'; 
  elseif Phi == 0 
      Touch_Legs = Touch; 
  end 
     
else 
    Touch_Legs = Touch; 
end 
 
Touches = [Touches Touch_Legs]; 
 
% contact check  
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A_U_0R  = roty(Phi) * rotz(Theta) * rotx(Psi); 
 
A_U_4RK = A_U_0R * A_0R_4RK; 
r_U_4RK = A_U_4RK(1:3, 4); 
 
r_4RK_G = [r_4RK_G_xU   -r_U_4RK(2)  -r_U_4RK(3)]'; 
 
r_U_G = r_U_4RK + r_4RK_G; 
 
A_U_G = [1  0  0       r_U_G(1) 
                   0  1  0       r_U_G(2) 
                   0  0  1       r_U_G(3) 
                   0  0  0          1     ]; 
 
A_G_U = inv(A_U_G); 
A_G_4RK = A_G_U * A_U_0R * A_0R_4RK; 
ss='RF'; 
A_0R_U = inv(A_U_0R); 
A_0R_4RK = A_0R_U * A_U_G * A_G_4RK; 
theta_RK = invkinematic(A_0R_4RK, ss); 
 
%---- 
A_U_4LK = A_U_0R * A_0R_4LK; 
r_U_4LK = A_U_4LK(1:3, 4); 
 
r_4LK_G = [r_4LK_G_xU   -r_U_4LK(2)  -r_U_4LK(3)]'; 
 
r_U_G = r_U_4LK + r_4LK_G; 
 
A_U_G = [1  0  0       r_U_G(1) 
                  0  1  0       r_U_G(2) 
                  0  0  1       r_U_G(3) 
                  0  0  0          1    ]; 
      
A_G_U = inv(A_U_G); 
A_G_4LK = A_G_U * A_U_0R * A_0R_0L * A_0L_4LK;  
ss='LF'; 
A_0L_0R = inv(A_0R_0L); 
A_0L_4LK = A_0L_0R * A_0R_U * A_U_G * A_G_4LK; 
theta_LK = invkinematic(A_0L_4LK, ss); 
 
 
end 
 
 qmd  = zeros(3, np); 
 qmdd = zeros(3, np); 
 
[nr, nc] = size(qm); 
     
% test for accuracy 
for i=1:nr 



 

 

255

    for j=1:nc 
        if abs(qm(i,j)) < TOL  
         qm(i,j) = 0; 
        end 
    end 
end 
 
%______________________________________________________ 
% Tansformation Matrix of wheel frame, universal wheel frame, surface frame 
 
R4RF_SRF = []; 
R4RR_SRR = []; 
R4LF_SLF = []; 
R4LR_SLR = []; 
 
for p=1:np 
     
    A_U_0R = roty(qm(2,p)) * rotz(qm(3,p)) * rotx(qm(1,p)); 
     
    [A_0R_4RF] = Kinematic(q_RF(:,p)', d, a, alpha, beta_SRF_zs(p), qm(3,p)); 
    [A_0R_4RR] = Kinematic(q_RR(:,p)', d, a, alpha, beta_SRR_zs(p), qm(3,p)); 
    [A_0L_4LF] = Kinematic(q_LF(:,p)', d, a, alpha,-beta_SLF_zs(p),-qm(3,p)); 
    [A_0L_4LR] = Kinematic(q_LR(:,p)', d, a, alpha,-beta_SLR_zs(p),-qm(3,p)); 
   
    A_U_4RF = A_U_0R * A_0R_4RF; 
    A_U_4RR = A_U_0R * A_0R_4RR; 
    A_U_4LF = A_U_0R * A_0R_0L * A_0L_4LF; 
    A_U_4LR = A_U_0R * A_0R_0L * A_0L_4LR; 
 
    % Right Front 
    [alpha_1,alpha_2,alpha_3] = HT_2_RPY(A_U_4RF); 
    A_WRF_4RF = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1);    % Wheel Universal frame 
    A_WRF_SRF = roty(beta_SRF_ys(p)) * rotz(beta_SRF_zs(p));         % Surface Frame    
    A_4RF_WRF = A_WRF_4RF'; 
    A_4RF_SRF = A_4RF_WRF * A_WRF_SRF; 
    R_4RF_SRF = A_4RF_SRF(1:3,1:3); 
 
    % Right Rear 
    [alpha_1,alpha_2,alpha_3] = HT_2_RPY(A_U_4RR); 
    A_WRR_4RR = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1);    % Wheel Universal frame 
    A_WRR_SRR = roty(beta_SRR_ys(p)) * rotz(beta_SRR_zs(p));         % Surface Frame 
    A_4RR_WRR = A_WRR_4RR';  
    A_4RR_SRR = A_4RR_WRR * A_WRR_SRR; 
    R_4RR_SRR = A_4RR_SRR(1:3,1:3); 
     
    % Left Front 
    [alpha_1,alpha_2,alpha_3] = HT_2_RPY(A_U_4LF);           
    A_WLF_4LF = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1);    % Wheel Universal frame    
    A_WLF_SLF = roty(beta_SLF_ys(p)) * rotz(beta_SLF_zs(p));         % Surface Frame 
    A_4LF_WLF = A_WLF_4LF'; 
    A_4LF_SLF = A_4LF_WLF * A_WLF_SLF; 
    R_4LF_SLF = A_4LF_SLF(1:3,1:3); 
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    % Left Rear 
    [alpha_1,alpha_2,alpha_3] = HT_2_RPY(A_U_4LR); 
    A_WLR_4LR = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1);    % Wheel Universal frame    
    A_WLR_SLR = roty(beta_SLR_ys(p)) * rotz(beta_SLR_zs(p));         % Surface Frame   
    A_4LR_WLR = A_WLR_4LR';  
    A_4LR_SLR = A_4LR_WLR * A_WLR_SLR; 
    R_4LR_SLR = A_4LR_SLR(1:3,1:3); 
     
    R4RF_SRF = [R4RF_SRF    R_4RF_SRF]; 
    R4RR_SRR = [R4RR_SRR    R_4RR_SRR]; 
    R4LF_SLF = [R4LF_SLF    R_4LF_SLF]; 
    R4LR_SLR = [R4LR_SLR    R_4LR_SLR]; 
     
end 
  
%______________________________________________________ 
% compute the force and moment exerted on the base OoR  
[Force, Moment,  Normal_Forces, towc, fc, fc_Moment, NF_moment,... 
 Tow_CRight, Tow_CFront, Tow_CLeft, Tow_CRear, ... 
 f_gravity, f_inertial, f_gravity_Moment, f_inertial_Moment] =... 
                    rne_base9(dh_dyn, [qm; qmd; qmdd], ... 
                    [q_RF; qd_RF; qdd_RF], [q_RR; qd_RR; qdd_RR], ... 
                    [q_LF; qd_LF; qdd_LF], [q_LR; qd_LR; qdd_LR], ... 
                    Flat_surface, theta_S_zs, theta_S_ys,... 
                    R4RF_SRF, R4RR_SRR, R4LF_SLF, R4LR_SLR, Touches);  
 
% test for accuracy 
for i=1:nr 
    for j=1:nc 
        if abs(Force(i,j)) < TOL  
          Force(i,j) = 0; 
        end 
         
        if abs(Moment(i,j)) < TOL  
          Moment(i,j) = 0; 
        end 
         
        if abs(Normal_Forces(i,j)) < TOL  
          Normal_Forces(i,j) = 0; 
        end 
         
        if abs(fc(i,j)) < TOL  
          fc(i,j) = 0; 
        end 
         
        if abs(towc(i,j)) < TOL  
          towc(i,j) = 0; 
        end 
         
        if abs(fc_Moment(i,j)) < TOL  
          fc_Moment(i,j) = 0; 
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        end 
         
        if abs(NF_moment(i,j)) < TOL  
          NF_moment(i,j) = 0; 
        end 
         
        if abs(Tow_CRight(i,j)) < TOL  
          Tow_CRight(i,j) = 0; 
        end 
         
        if abs(Tow_CFront(i,j)) < TOL  
          Tow_CFront(i,j) = 0; 
        end 
         
        if abs(Tow_CLeft(i,j)) < TOL  
          Tow_CLeft(i,j) = 0; 
        end 
        
        if abs(Tow_CRear(i,j)) < TOL  
          Tow_CRear(i,j) = 0; 
        end 
         
        if abs(f_gravity(i,j)) < TOL  
          f_gravity(i,j) = 0; 
        end 
        
        if abs(f_inertial(i,j)) < TOL  
          f_inertial(i,j) = 0; 
        end 
         
        if abs(f_gravity_Moment(i,j)) < TOL  
          f_gravity_Moment(i,j) = 0; 
        end 
 
        if abs(f_inertial_Moment(i,j)) < TOL  
          f_inertial_Moment(i,j) = 0; 
        end 
         
    end 
end 
 
Momentt = Moment; 
 
Tow_CRight = Tow_CRight(2,:); 
Tow_CFront = Tow_CFront(3,:); 
Tow_CLeft  = Tow_CLeft(2,:); 
Tow_CRear  = Tow_CRear(3,:); 
 



 

 

258

Rne_base9.m 
 

function [Force, Moment, Normal_Forces, Towc, Fc, Fc_Moment, NF_moment,... 
    Tow_Critical_Right, Tow_Critical_Front, Tow_Critical_Left, Tow_Critical_Rear,... 
    F_gravity, F_inertial, F_gravity_Moment, F_inertial_Moment] = ... 
    rne(dh_dyn, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13) 
 
    n  = numrows(dh_dyn);   % number of links in one manipulator 
 np = numcols(a2)       % number of time samples 
     
    Q0   = a1(1:3,:); 
    Q0d  = a1(4:6,:); 
    Q0dd = a1(7:9,:); 
     
    Q_RF   = a2(1:4,:);      
    Qd_RF  = a2(5:8,:); 
 Qdd_RF = a2(9:12,:); 
 
    Q_RR   = a3(1:4,:); 
 Qd_RR  = a3(5:8,:); 
 Qdd_RR = a3(9:12,:); 
  
    Q_LF   = a4(1:4,:); 
 Qd_LF  = a4(5:8,:); 
 Qdd_LF = a4(9:12,:); 
     
    Q_LR   = a5(1:4,:); 
 Qd_LR  = a5(5:8,:); 
 Qdd_LR = a5(9:12,:); 
    
    Flat_surface = a6;   
     
    theta_S_zu = a7; 
    theta_S_yu = a8; 
     
     R_Right_side = [a9; a10]; 
     R_Left_side  = [a11; a12]; 
      
     Touching = a13; 
    
    %______________ Initial Conditions ________________  
    radius = dh_dyn(5,3); 
    %g = 9.81; %acceleration gravity on earth surface (m/s^2). 
    g = 3.63; %acceleration gravity on Mars surface (m/s^2). 
     
    V  = zeros(3, np);  
    Vd = zeros(3, np); 
     
    Vp  = zeros(4, np);  
    Vpd = zeros(4, np); 
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    for p=1:np, 
         
        Vp(:,p)  = rotz(Q0(2,p))*rotz(Q0(3,p))*rotz(Q0(1,p))*... 
            [ 0;  (radius*Qd_RF(4,p)  - radius*Qd_LF(4,p))/2;   0; 1]; 
  Vpd(:,p) = rotz(Q0(2,p))*rotz(Q0(3,p))*rotz(Q0(1,p))*... 
            [ 0;  (radius*Qdd_RF(4,p) - radius*Qdd_LF(4,p))/2;  0; 1]; 
    end 
     
    for p=1:np, 
         
        V(:,p)  = [ 0;  0;   0] + Vp(1:3,p); 
  Vd(:,p) = [-g;  0;   0] + Vpd(1:3,p); 
    end 
 
%     w = zeros(3,1); 
   %  wd = zeros(3,1); 
    %___________________________________________________    
         
    m = dh_dyn(:,6); % column vector of links' masses 
    mass = m(1) + 2*m(2) + 2*m(3) + 4*m(4) + 4*m(5); % System total mass 
     
 rc = dh_dyn(:,7:9)'; % matrix of COM data; row per link 
  
 Im = []; 
 for j=1:n, 
  I = [dh_dyn(j,10) dh_dyn(j,13) dh_dyn(j,15); ... 
    dh_dyn(j,13) dh_dyn(j,11) dh_dyn(j,14); ... 
    dh_dyn(j,15) dh_dyn(j,14) dh_dyn(j,12)]; 
  Im = [Im I]; 
 end 
 
    Force_Moment_NOM = [];     
 
    f_NOM = []; 
    tow_NOM = []; 
     
    A_NOM = []; 
    R_NOM = []; 
    pstar_NOM = []; 
     
for NOM=1:4,   
     
    if NOM == 1, 
        Q   = Q_RF; 
     Qd  = Qd_RF; 
     Qdd = Qdd_RF; 
        sign = 1; 
    elseif NOM == 2, 
        Q   = Q_RR; 
     Qd  = Qd_RR; 
     Qdd = Qdd_RR; 
        sign = 1; 
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    elseif NOM == 3, 
        Q   = Q_LF; 
     Qd  = Qd_LF; 
     Qdd = Qdd_LF; 
        sign = -1; 
    elseif NOM == 4, 
        Q   = Q_LR; 
     Qd  = Qd_LR; 
     Qdd = Qdd_LR;     
        sign = -1; 
    end 
            
 f_p = []; 
    tow_p = []; 
     
    A_p = []; 
    R_p = []; 
    pstar_p = []; 
     
    for p=1:np, 
 
        q0  = Q0(:,p); 
        q0d = Q0d(:,p); 
        q0dd= Q0dd(:,p); 
         
  q   = Q(:,p); 
  qd  = Qd(:,p); 
  qdd = Qdd(:,p); 
         
        v  = V(:,p); 
        vd = Vd(:,p); 
         
        w  = q0d; 
        wd = q0dd; 
         
     fm = []; 
  towm = []; 
   
        pstarm = []; 
        Am = []; 
        Rm = []; 
                 
        theta = q; 
        d     = dh_dyn(2:n,2); 
  a     = dh_dyn(2:n,3); 
        alpha = dh_dyn(2:n,4); 
  
        %___________________________________________________   
             
        A_U_0R = roty(q0(2)) * rotz(q0(3)) * rotx(q0(1)); 
        R_U_0R = A_U_0R(1:3,1:3); 
        R_0R_0L= [1 0 0;0 -1 0;0 0 -1]; 
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        A_0R_0L= [1 0 0 0;0 -1 0 0;0 0 -1 0;0 0 0 1]; 
         
        if (NOM == 1 || NOM == 2) 
            Rm = [Rm R_U_0R]; 
            Am = [Am A_U_0R]; 
        elseif (NOM == 3 || NOM == 4) 
            R_U_0L = R_U_0R * R_0R_0L; 
            A_U_0L = A_U_0R * A_0R_0L; 
            Rm = [Rm R_U_0L]; 
            Am = [Am A_U_0L]; 
        end 
             
        p_U_0  = [0; 0; 0]; 
        pstarm = [pstarm p_U_0]; 
  %___________________________________________________   
 
        qd=[q0d [0 0 0 0; ... 
                 0 0 0 0; ... 
                      qd']]; 
    
        qdd=[q0dd [0 0 0 0; ... 
                   0 0 0 0; ... 
                      qdd']]; 
          %___________________________________________________   
          % theta_4 manipulated in contact point of wheel with ground  
          theta(4) = -theta(1) - theta(3) + sign*(theta_S_zu(NOM, p) - q0(3)) ; 
          theta(3) =  theta(3) + pi;   
 
       for j=1:n-1, 
                
             A = DHtransformation(theta(j), d(j), a(j), alpha(j)); 
             pstar = [a(j); d(j)*sin(alpha(j)); d(j)*cos(alpha(j))]; 
 
             Am = [Am A]; 
             R  = A(1:3,1:3);                                 
    Rm = [Rm R]; 
                          
            pstarm = [pstarm pstar]; 
        end 
 
        %------------------------------------------------------ 
         
     % 
     %  the forward recursion 
     % 
 
        for j=1:n, 
                 
            R = Rm(:,3*j-2:3*j)'; 
            pstar = pstarm(:,j); 
            I = Im(:,3*j-2:3*j); 
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            wd = R*(wd + qdd(:,j) + cross(w,qd(:,j))); 
            w  = R*(w + qd(:,j)); 
 
            vd = cross(wd,pstar) + cross(w, cross(w,pstar)) + R*vd; 
             
            vd_c = cross(wd,rc(:,j)) + cross(w,cross(w,rc(:,j))) + vd;  
 
   f = m(j)*vd_c; 
   tow = I*wd + cross(w,I*w); 
   fm = [fm f]; 
   towm = [towm tow]; 
             
     end 
         
 f_p = [f_p fm]; 
    tow_p = [tow_p towm]; 
     
    R_p = [R_p Rm]; 
    A_p = [A_p Am]; 
    pstar_p = [pstar_p pstarm]; 
     
    end 
     
    pstar_NOM = [pstar_NOM; pstar_p]; 
    A_NOM     = [A_NOM; A_p]; 
    R_NOM     = [R_NOM; R_p]; 
    f_NOM     = [f_NOM; f_p]; 
    tow_NOM   = [tow_NOM; tow_p]; 
    
end 
f_NOM; 
 
%________ Normal Forces __________ 
 
Fext_SRF_SRF = []; 
Fext_SRR_SRR = []; 
Fext_SLF_SLF = []; 
Fext_SLR_SLR = []; 
 
towc_sys = []; fc_sys = []; fc_Moment_sys= []; NF_moment_sys = []; 
tow_CRight_sys = []; tow_CFront_sys = []; tow_CLeft_sys  = []; tow_CRear_sys  = [];  
f_gravity_sys = []; f_inertial_sys = []; 
f_gravity_Moment_sys = []; f_inertial_Moment_sys = []; 
 
for p=1:np, 
     
    %meu_s = 0.6; 
    %meu_k = 0.15; 
     
    q0  = Q0(:,p); 
    nc  = 4; 
    Touch = Touching(:,p); 
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    [Fn_SRF, Fn_SRR, Fn_SLF, Fn_SLR, towc, fc, fc_Moment, NF_moment,... 
     tow_Critical_Right, tow_Critical_Front, tow_Critical_Left, tow_Critical_Rear,... 
     f_gravity, f_inertial, f_gravity_Moment, f_inertial_Moment] =... 
            Inertial11(f_NOM(:,5*p-4:5*p), tow_NOM(:,5*p-4:5*p),... 
                       R_NOM(:,15*p-14:15*p), A_NOM(:,20*p-19:20*p),... 
                       pstarm, dh_dyn, theta_S_zu(:,p), theta_S_yu(:,p),... 
                       Touch, m, q0(2),q0(3)); 
    
    
    Ff_SRF = 0;%meu_s * Fn_SRF;         %  
    Ff_SRR = 0;%meu_s * Fn_SRR;         %  Static frictional force 
    Ff_SLF = 0;%meu_s * Fn_SLF;         %  
    Ff_SLR = 0;%meu_s * Fn_SLR;         %  
     
    %Ff_SRF = meu_k * Fn_SRF;         %  
    %Ff_SRR = meu_k * Fn_SRR;         %  Dynamic frictional force 
    %Ff_SLF = meu_k * Fn_SLF;         %  
    %Ff_SLR = meu_k * Fn_SLR;         %  
     
    %_______Generalized ground input forces and moments________ 
        
    FSRF_SRF = [Fn_SRF    -Ff_SRF      0]';          % 
    FSRR_SRR = [Fn_SRR    -Ff_SRR      0]';          % External resultant force 
    FSLF_SLF = [Fn_SLF    -Ff_SLF      0]';          % 
    FSLR_SLR = [Fn_SLR    -Ff_SLR      0]';          % 
     
    TSRF_SRF = [0      0     0]';         % 
    TSRR_SRR = [0      0     0]';         % External resultant moment 
    TSLF_SLF = [0      0     0]';         % 
    TSLR_SLR = [0      0     0]';         % 
 
    Fext_SRF_SRF = [Fext_SRF_SRF  [FSRF_SRF; TSRF_SRF]]; 
    Fext_SRR_SRR = [Fext_SRR_SRR  [FSRR_SRR; TSRR_SRR]]; 
    Fext_SLF_SLF = [Fext_SLF_SLF  [FSLF_SLF; TSLF_SLF]]; 
    Fext_SLR_SLR = [Fext_SLR_SLR  [FSLR_SLR; TSLR_SLR]]; 
     
    towc_sys = [towc_sys towc]; 
    fc_sys   = [fc_sys fc]; 
    fc_Moment_sys = [fc_Moment_sys fc_Moment]; 
    NF_moment_sys = [NF_moment_sys NF_moment]; 
     
    tow_CRight_sys = [tow_CRight_sys tow_Critical_Right]; 
    tow_CFront_sys = [tow_CFront_sys tow_Critical_Front]; 
    tow_CLeft_sys  = [tow_CLeft_sys  tow_Critical_Left]; 
    tow_CRear_sys  = [tow_CRear_sys  tow_Critical_Rear];  
     
    f_gravity_sys  = [f_gravity_sys  f_gravity];  
    f_inertial_sys = [f_inertial_sys f_inertial]; 
    f_gravity_Moment_sys  = [f_gravity_Moment_sys   f_gravity_Moment]; 
    f_inertial_Moment_sys = [f_inertial_Moment_sys  f_inertial_Moment]; 
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end 
 
Towc = towc_sys; 
Fc = fc_sys; 
Fc_Moment = fc_Moment_sys; 
NF_moment = NF_moment_sys; 
 
Tow_Critical_Right = tow_CRight_sys; 
Tow_Critical_Front = tow_CFront_sys; 
Tow_Critical_Left  = tow_CLeft_sys; 
Tow_Critical_Rear  = tow_CRear_sys; 
 
F_gravity  = f_gravity_sys;  
F_inertial = f_inertial_sys; 
F_gravity_Moment  = f_gravity_Moment_sys; 
F_inertial_Moment = f_inertial_Moment_sys; 
     
%______________________________________________________________________ 
 
 
Force_Moment_nps = []; 
 
for s =1:2                  % Right/Left side  
         
    if s == 1, 
        pstar_s = pstar_NOM(1:6,:); 
        R_s     = R_NOM(1:6,:); 
        f_s     = f_NOM(1:6,:); 
        tow_s   = tow_NOM(1:6,:); 
        Fext_s    = [Fext_SRF_SRF; Fext_SRR_SRR]; 
        R_s_Surface = R_Right_side; 
      
    elseif s == 2, 
        pstar_s = pstar_NOM(7:12,:); 
        R_s     = R_NOM(7:12,:); 
        f_s     = f_NOM(7:12,:); 
        tow_s   = tow_NOM(7:12,:); 
        Fext_s    = [Fext_SLF_SLF; Fext_SLR_SLR]; 
        R_s_Surface = R_Left_side; 
    end 
 
     
    Force_Moment_NOM = []; 
     
    for NOM = 1:2,          % Front/Rear Leg 
 
        if NOM == 1, 
            pstar = pstar_s(1:3,:); 
            Rot   = R_s(1:3,:); 
            f     = f_s(1:3,:); 
            tow   = tow_s(1:3,:);        
            Fext  = Fext_s(1:6,:); 
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            R_Surface = R_s_Surface(1:3,:); 
                         
        elseif NOM ==2, 
            pstar = pstar_s(4:6,:); 
            Rot   = R_s(4:6,:);         
            f     = f_s(4:6,:); 
            tow   = tow_s(4:6,:); 
            Fext  = Fext_s(7:12,:);  
            R_Surface = R_s_Surface(4:6,:); 
             
        end 
         
        Force_Moment_np = []; 
                 
        for p=1:np, 
 
            R_4_S = R_Surface(:,3*p-2:3*p); 
               
            rm   = pstar(:,5*p-4:5*p); 
            Rm   = Rot(:,15*p-14:15*p); 
            fm   = f(:,5*p-4:5*p); 
            towm = tow(:,5*p-4:5*p); 
            F    = Fext(1:3,p);  % force/moments at end of end-effector 
      T    = Fext(4:6,p); 
             
            Moment_n =[]; 
            Force_n  =[];    
             
            for j =n:-1:3 
                 
                r = rm(:,j); 
            
                if j == n, 
                    R = R_4_S; 
                else 
        R = Rm(:,3*j+1:3*j+3); 
                end 
         
                if (j == 5) || (j == 4) || ((j==3)&&(NOM == 1)) 
 
                    T = R*(T + cross(R'*r,F)) + cross(r+rc(:,j),fm(:,j)) + towm(:,j); 
                    F = R*F + fm(:,j); 
             
                elseif (j == 3)&&(NOM == 2), 
                 
                    T = R*(T + cross(R'*r,F)); 
                    F = R*F; 
   
                end 
                 
                Moment_n = [Moment_n  T]; 
                Force_n  = [Force_n   F]; 
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            end 
            Force_Moment_np = [Force_Moment_np     [Force_n;     Moment_n]]; 
        end 
         
        Force_Moment_NOM = [Force_Moment_NOM;   Force_Moment_np]; 
 
    end 
 
    %____Conjunctional joint____ 
    for p=1:np, 
        Force_Moment_NOM(1:6,3*p) = Force_Moment_NOM(1:6,3*p) + Force_Moment_NOM(7:12,3*p); 
    end 
     
    %Force_Moment_NOM 
     
    Force_Moment_NOM_s = Force_Moment_NOM(1:6,:); 
 
    %___________________________ 
    
    pstar = pstar_s(1:3,:); 
    Rot   = R_s(1:3,:); 
    f     = f_s(1:3,:); 
    tow   = tow_s(1:3,:);   
    
    Moment_ns = []; 
    Force_ns  = []; 
         
    for p = 1:np, 
               
        Rm   = Rot(:,15*p-14:15*p); 
        rm   = pstar(:,5*p-4:5*p); 
        fm   = f(:,5*p-4:5*p); 
        towm = tow(:,5*p-4:5*p);                  
                  
        F = Force_Moment_NOM_s(1:3,3*p); 
        T = Force_Moment_NOM_s(4:6,3*p); 
                 
        j = 2;  
        r = rm(:,j); 
        R = Rm(:,3*j+1:3*j+3); 
      
        T = R*(T + cross(R'*r,F)) + cross(r+rc(:,j),fm(:,j)) + towm(:,j); 
        F = R*F + fm(:,j); 
       
        Moment_ns = [Moment_ns  T]; 
        Force_ns  = [Force_ns   F]; 
       
    end 
             
    Force_Moment_nps = [Force_Moment_nps;     [Force_ns;     Moment_ns]]; 
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end 
    
F1R_1R = Force_Moment_nps(1:3,:); 
T1R_1R = Force_Moment_nps(4:6,:); 
  
F1L_1L = Force_Moment_nps(7:9,:); 
T1L_1L = Force_Moment_nps(10:12,:); 
    
f0R_0R   = f_NOM(1:3,:); 
tow0R_0R = tow_NOM(1:3,:); 
    
R0R_0L = [1 0 0;0 -1 0;0 0 -1]; 
Rot_R  = R_NOM(1:3,:); 
Rot_L  = R_NOM(7:9,:); 
    
pstar_R = pstar_NOM(1:3,:); 
    
Moment_ns = []; 
Force_ns  = []; 
 
 
for p = 1: np, 
        
        Rm_R   = Rot_R(:,15*p-14:15*p); 
        Rm_L   = Rot_L(:,15*p-14:15*p); 
         
        rm   = pstar_R(:,5*p-4:5*p); 
        fm   = f0R_0R(:,5*p-4:5*p); 
        towm = tow0R_0R(:,5*p-4:5*p);      
         
        TR = T1R_1R(:,p); 
        FR = F1R_1R(:,p); 
         
        TL = T1L_1L(:,p); 
        FL = F1L_1L(:,p); 
                 
        j=1; 
         
        r = rm(:,j); 
        R_R = Rm_R(:,3*j+1:3*j+3); 
        R_L = Rm_L(:,3*j+1:3*j+3); 
         
        T = R_R*(TR + cross(R_R'*r,FR)) + cross(r+rc(:,j),fm(:,j)) + towm(:,j)+... 
            R0R_0L*R_L*(TL + cross(R_L'*r,FL)); 
        F = R_R*FR + fm(:,j) + R0R_0L * R_L*FL; 
                 
        Moment_ns = [Moment_ns  T]; 
        Force_ns  = [Force_ns   F]; 
end 
     
Force_Moment_np0 = [Force_ns;     Moment_ns]; 
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    for p = 1:np, 
        R_U_0  = R_NOM(1:3,15*p-14:15*p-12); 
         
        F(1:3,p) = R_U_0 * Force_Moment_np0(1:3, p); 
        T(1:3,p) = R_U_0 * Force_Moment_np0(4:6, p); 
    end 
     
 Force  = F; 
 Moment = T; 
 
 Normal_Forces = [Fext_SRF_SRF(1,:);  Fext_SRR_SRR(1,:);... 
                  Fext_SLF_SLF(1,:);  Fext_SLR_SLR(1,:)]; 

 
Inertial11 

 
function [FnSRF, FnSRR, FnSLF, FnSLR, towc, fc, fc_Moment, Normal_Forces_moments,... 
        tow_Critical_Right, tow_Critical_Front, tow_Critical_Left, tow_Critical_Rear,... 
    f_gravity, f_inertial, f_gravity_Moment, f_inertial_Moment] =... 
    Inertial11(f, tow, R, A, pstarm, dh_dyn, theta_S_zu, theta_S_yu, Touch, m, Roll, Pitch) 
 
touchRF = Touch(1); 
touchRR = Touch(2); 
touchLF = Touch(3); 
touchLR = Touch(4); 
 
m0 = m(1); m1 = m(2); m2 = m(3); m3 = m(4); m4 = m(5); 
Mass = m0 + 2*(m1 + m2) + 4*(m3 + m4); 
 
TOL = 0.00001;  % tolerance value 
 
g = 3.63; 
meu=0;  
 
f0R  = f(1:3,1); 
f1R  = f(1:3,2); 
f2R  = f(1:3,3); 
f3RF = f(1:3,4); 
f4RF = f(1:3,5); 
f3RR = f(4:6,4); 
f4RR = f(4:6,5); 
 
 
f0L  = f(7:9,1);   f1L  = f(7:9,2); f2L  = f(7:9,3);  
f3LF = f(7:9,4);   f4LF = f(7:9,5);  
f3LR = f(10:12,4); f4LR = f(10:12,5);  
 
tow0R  = tow(1:3,1); tow1R  = tow(1:3,2); tow2R = tow(1:3,3);  
tow3RF = tow(1:3,4); tow4RF = tow(1:3,5); 
tow3RR = tow(4:6,4); tow4RR = tow(4:6,5); 
 
tow0L  = tow(7:9,1); tow1L  = tow(7:9,2); tow2L = tow(7:9,3);  
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tow3LF = tow(7:9,4); tow4LF = tow(7:9,5); 
tow3LR = tow(10:12,4); tow4LR = tow(10:12,5); 
 
 
tow4RF; 
tow4RR; 
tow4LF; 
tow4LR; 
 
 
r0 =  pstarm(:, 1); 
r1 =  pstarm(:, 2); 
r2 =  pstarm(:, 3); 
r3 =  pstarm(:, 4); 
r4 =  pstarm(:, 5); 
 
rc = dh_dyn(:,7:9)'; 
 
rc0 = rc(:,1); 
rc1 = rc(:,2); 
rc2 = rc(:,3); 
rc3 = rc(:,4); 
rc4 = rc(:,5); 
 
AU_4RF = A(1:4,1:4) * A(1:4,5:8) * A(1:4,9:12) * A(1:4,13:16) *A(1:4,17:20); 
AU_3RF = A(1:4,1:4) * A(1:4,5:8) * A(1:4,9:12) * A(1:4,13:16); 
AU_2R  = A(1:4,1:4) * A(1:4,5:8) * A(1:4,9:12); 
AU_1R  = A(1:4,1:4) * A(1:4,5:8); 
AU_0R  = A(1:4,1:4); 
 
rU_4RF = AU_4RF(1:3,4); 
rU_3RF = AU_3RF(1:3,4); 
rU_2R  = AU_2R(1:3,4); 
rU_1R  = AU_1R(1:3,4); 
rU_0R  = AU_0R(1:3,4); 
 
rcU_4RF = rU_3RF; % - AU_4RF(1:3,1:3)*rc4 ; 
rcU_3RF = rU_2R  - AU_3RF(1:3,1:3)*rc3; 
rcU_2R  = rU_1R  - AU_2R(1:3,1:3)*rc2;  
rcU_1R  = rU_0R  - AU_1R(1:3,1:3)*rc1; 
rcU_0R  = r0; 
 
AU_4RR = A(5:8,1:4) * A(5:8,5:8) * A(5:8,9:12) * A(5:8,13:16) *A(5:8,17:20); 
AU_3RR = A(5:8,1:4) * A(5:8,5:8) * A(5:8,9:12) * A(5:8,13:16);  
 
rU_4RR = AU_4RR(1:3,4); 
rU_3RR = AU_3RR(1:3,4); 
 
rcU_4RR = rU_3RR;% - AU_4RR(1:3,1:3)*rc4; 
rcU_3RR = rU_2R  - AU_3RR(1:3,1:3)*rc3; 
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AU_4LF = A(9:12,1:4) * A(9:12,5:8) * A(9:12,9:12) * A(9:12,13:16) *A(9:12,17:20); 
AU_3LF = A(9:12,1:4) * A(9:12,5:8) * A(9:12,9:12) * A(9:12,13:16); 
AU_2L  = A(9:12,1:4) * A(9:12,5:8) * A(9:12,9:12); 
AU_1L  = A(9:12,1:4) * A(9:12,5:8); 
AU_0L  = A(9:12,1:4); 
 
rU_4LF = AU_4LF(1:3,4); 
rU_3LF = AU_3LF(1:3,4); 
rU_2L  = AU_2L(1:3,4); 
rU_1L  = AU_1L(1:3,4); 
rU_0L  = AU_0L(1:3,4); 
 
rcU_4LF = rU_3LF;% - AU_4LF(1:3,1:3)*rc4; 
rcU_3LF = rU_2L - AU_3LF(1:3,1:3)*rc3; 
rcU_2L  = rU_1L - AU_2L(1:3,1:3)*rc2; 
rcU_1L  = rU_0R - AU_1L(1:3,1:3)*rc1; 
 
AU_4LR = A(13:16,1:4) * A(13:16,5:8) * A(13:16,9:12) * A(13:16,13:16) * A(13:16,17:20); 
AU_3LR = A(13:16,1:4) * A(13:16,5:8) * A(13:16,9:12) * A(13:16,13:16);  
 
rU_4LR = AU_4LR(1:3,4); 
rU_3LR = AU_3LR(1:3,4); 
 
rcU_4LR = rU_3LR; % - AU_4LR(1:3,1:3)*rc4; 
rcU_3LR = rU_2L  - AU_3LR(1:3,1:3)*rc3; 
 
%__________________________________________________________________ 
% Right Front 
    beta_SRF_zu = theta_S_zu(1); 
    beta_SRF_yu = theta_S_yu(1); 
    [alpha_1,alpha_2,alpha_3] = HT_2_RPY(AU_4RF); 
    AWRF_4RF = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1);    % Wheel Universal frame 
    AWRF_SRF = roty(beta_SRF_yu) * rotz(beta_SRF_zu);         % Surface Frame    
    A4RF_WRF = AWRF_4RF';  
    A4RF_SRF = A4RF_WRF * AWRF_SRF; 
    AU_SRF   = AU_4RF * A4RF_SRF; 
     
% Right Rear 
    beta_SRR_zu = theta_S_zu(2); 
    beta_SRR_yu = theta_S_yu(2); 
    [alpha_1,alpha_2,alpha_3] = HT_2_RPY(AU_4RR); 
    AWRR_4RR = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1);    % Wheel Universal frame 
    AWRR_SRR = roty(beta_SRR_yu) * rotz(beta_SRR_zu);         % Surface Frame 
    A4RR_WRR = AWRR_4RR';  
    A4RR_SRR = A4RR_WRR * AWRR_SRR; 
    AU_SRR   = AU_4RR * A4RR_SRR; 
     
% Left Front 
    beta_SLF_zu = theta_S_zu(3); 
    beta_SLF_yu = theta_S_yu(3); 
    [alpha_1,alpha_2,alpha_3] = HT_2_RPY(AU_4LF);           
    AWLF_4LF = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1);    % Wheel Universal frame    
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    AWLF_SLF = roty(beta_SLF_yu) * rotz(beta_SLF_zu);         % Surface Frame 
    A4LF_WLF = AWLF_4LF'; 
    A4LF_SLF = A4LF_WLF * AWLF_SLF; 
    AU_SLF   = AU_4LF * A4LF_SLF; 
     
% Left Rear 
    beta_SLR_zu = theta_S_zu(4); 
    beta_SLR_yu = theta_S_yu(4); 
    [alpha_1,alpha_2,alpha_3] = HT_2_RPY(AU_4LR); 
    AWLR_4LR = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1);    % Wheel Universal frame    
    AWLR_SLR = roty(beta_SLR_yu) * rotz(beta_SLR_zu);         % Surface Frame   
    A4LR_WLR = AWLR_4LR';  
    A4LR_SLR = A4LR_WLR * AWLR_SLR; 
    AU_SLR   = AU_4LR * A4LR_SLR; 
     
%__________________________________________________________________ 
 
inv(AU_0R(1:3,1:3))*AU_SRF(1:3,1:3); 
inv(AU_0R(1:3,1:3))*AU_SRR(1:3,1:3); 
inv(AU_0R(1:3,1:3))*AU_SLF(1:3,1:3); 
inv(AU_0R(1:3,1:3))*AU_SLR(1:3,1:3); 
 
AU_SRF(1:3,1:3); 
AU_SRR(1:3,1:3); 
AU_SLF(1:3,1:3); 
AU_SLR(1:3,1:3); 
 
H1 = AU_SRF(1:3,1:3)*[1  -meu 0]'; 
H2 = AU_SRR(1:3,1:3)*[1  -meu 0]'; 
H3 = AU_SLF(1:3,1:3)*[1  -meu 0]'; 
H4 = AU_SLR(1:3,1:3)*[1  -meu 0]'; 
 
System_Force_0R = inv(AU_0R(1:3,1:3))*... 
     (AU_4RF(1:3,1:3)*f4RR + AU_3RF(1:3,1:3)*f3RF + AU_4RR(1:3,1:3)*f4RR + 
AU_3RR(1:3,1:3)*f3RR + ... 
      AU_2R(1:3,1:3)*f2R + AU_1R(1:3,1:3)*f1R + AU_4LF(1:3,1:3)*f4LF + AU_3LF(1:3,1:3)*f3LF + ... 
      AU_4LR(1:3,1:3)*f4LR + AU_3LR(1:3,1:3)*f3LR + AU_2L(1:3,1:3)*f2L + AU_1L(1:3,1:3)*f1L + ... 
      AU_0R(1:3,1:3)*f0R); 
 
System_Force_U = AU_4RF(1:3,1:3)*f4RR + AU_3RF(1:3,1:3)*f3RF + AU_4RR(1:3,1:3)*f4RR + 
AU_3RR(1:3,1:3)*f3RR + ... 
      AU_2R(1:3,1:3)*f2R + AU_1R(1:3,1:3)*f1R + AU_4LF(1:3,1:3)*f4LF + AU_3LF(1:3,1:3)*f3LF + ... 
      AU_4LR(1:3,1:3)*f4LR + AU_3LR(1:3,1:3)*f3LR + AU_2L(1:3,1:3)*f2L + AU_1L(1:3,1:3)*f1L + ... 
      AU_0R(1:3,1:3)*f0R; 
 
  A1 = touchRF * cross(rU_4RF, AU_SRF(1:3,1:3)*[1 -meu 0]'); 
  A2 = touchRR * cross(rU_4RR, AU_SRR(1:3,1:3)*[1 -meu 0]'); 
  A3 = touchLF * cross(rU_4LF, AU_SLF(1:3,1:3)*[1 -meu 0]'); 
  A4 = touchLR * cross(rU_4LR, AU_SLR(1:3,1:3)*[1 -meu 0]'); 
   
    M_U =    cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+... 
            cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+... 
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            cross(rcU_2R, AU_2R(1:3,1:3)*f2R)    + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+... 
            cross(rcU_0R, AU_0R(1:3,1:3)*f0R)    + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+... 
            cross(rcU_2L, AU_2L(1:3,1:3)*f2L)    + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+... 
            cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+... 
            cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ... 
            AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + AU_4RR(1:3,1:3)*tow4RR + 
AU_3RR(1:3,1:3)*tow3RR+... 
            AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + AU_4LR(1:3,1:3)*tow4LR + 
AU_3LR(1:3,1:3)*tow3LR+... 
            AU_2R(1:3,1:3)*tow2R   + AU_1R(1:3,1:3)*tow1R   + AU_2L(1:3,1:3)*tow2L   + 
AU_1L(1:3,1:3)*tow1L +... 
            AU_0R(1:3,1:3)*tow0R; 
         
    rU_4RR - rU_4RF; 
    rU_4LF - rU_4RF; 
    rU_4LR - rU_4RF; 
     
    B1 = touchRR * cross(rU_4RR - rU_4RF, AU_SRR(1:3,1:3)*[1 -meu 0]'); 
    B2 = touchLF * cross(rU_4LF - rU_4RF, AU_SLF(1:3,1:3)*[1 -meu 0]'); 
    B3 = touchLR * cross(rU_4LR - rU_4RF, AU_SLR(1:3,1:3)*[1 -meu 0]'); 
  
    M1 = cross(rcU_4RF - rU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU_4RF, 
AU_3RF(1:3,1:3)*f3RF)+... 
            cross(rcU_4RR - rU_4RF, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR - rU_4RF, 
AU_3RR(1:3,1:3)*f3RR)+... 
            cross(rcU_2R  - rU_4RF, AU_2R(1:3,1:3)*f2R)   + cross(rcU_1R  - rU_4RF, 
AU_1R(1:3,1:3)*f1R)+... 
            cross(rcU_0R  - rU_4RF, AU_0R(1:3,1:3)*f0R)   + cross(rcU_1L  - rU_4RF, 
AU_1L(1:3,1:3)*f1L)+... 
            cross(rcU_2L  - rU_4RF, AU_2L(1:3,1:3)*f2L)   + cross(rcU_3LF - rU_4RF, 
AU_3LF(1:3,1:3)*f3LF)+... 
            cross(rcU_4LF - rU_4RF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU_4RF, 
AU_3LR(1:3,1:3)*f3LR)+... 
            cross(rcU_4LR - rU_4RF, AU_4LR(1:3,1:3)*f4LR) + ... 
            AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + AU_4RR(1:3,1:3)*tow4RR + 
AU_3RR(1:3,1:3)*tow3RR+... 
            AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + AU_4LR(1:3,1:3)*tow4LR + 
AU_3LR(1:3,1:3)*tow3LR+... 
            AU_2R(1:3,1:3)*tow2R   + AU_1R(1:3,1:3)*tow1R   + AU_2L(1:3,1:3)*tow2L   + 
AU_1L(1:3,1:3)*tow1L +... 
            AU_0R(1:3,1:3)*tow0R; 
        
    C1 = touchRF * cross(rU_4RF - rU_4RR, AU_SRF(1:3,1:3)*[1 -meu 0]'); 
    C2 = touchLF * cross(rU_4LF - rU_4RR, AU_SLF(1:3,1:3)*[1 -meu 0]'); 
    C3 = touchLR * cross(rU_4LR - rU_4RR, AU_SLR(1:3,1:3)*[1 -meu 0]'); 
  
    M2 = cross(rcU_4RR - rU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR - rU_4RR, 
AU_3RR(1:3,1:3)*f3RR)+... 
         cross(rcU_4RF - rU_4RR, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU_4RR, 
AU_3RR(1:3,1:3)*f3RR)+... 
         cross(rcU_2R  - rU_4RR, AU_2R(1:3,1:3)*f2R)   + cross(rcU_1R  - rU_4RR, 
AU_1R(1:3,1:3)*f1R)+... 
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         cross(rcU_0R  - rU_4RR, AU_0R(1:3,1:3)*f0R)   + cross(rcU_1L  - rU_4RR, 
AU_1L(1:3,1:3)*f1L)+... 
         cross(rcU_2L  - rU_4RR, AU_2L(1:3,1:3)*f2L)   + cross(rcU_3LF - rU_4RR, 
AU_3LF(1:3,1:3)*f3LF)+... 
         cross(rcU_4LF - rU_4RR, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU_4RR, 
AU_3LR(1:3,1:3)*f3LR)+... 
         cross(rcU_4LR - rU_4RR, AU_4LR(1:3,1:3)*f4LR) +... 
         AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + AU_4RR(1:3,1:3)*tow4RR + 
AU_3RR(1:3,1:3)*tow3RR+... 
         AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + AU_4LR(1:3,1:3)*tow4LR + 
AU_3LR(1:3,1:3)*tow3LR+... 
         AU_2R(1:3,1:3)*tow2R   + AU_1R(1:3,1:3)*tow1R   + AU_2L(1:3,1:3)*tow2L   + 
AU_1L(1:3,1:3)*tow1L +... 
         AU_0R(1:3,1:3)*tow0R; 
      
    D1 = touchRF * cross(rU_4RF - rU_4LF, AU_SRF(1:3,1:3)*[1 -meu 0]'); 
    D2 = touchRR * cross(rU_4RR - rU_4LF, AU_SRR(1:3,1:3)*[1 -meu 0]'); 
    D3 = touchLR * cross(rU_4LR - rU_4LF, AU_SLR(1:3,1:3)*[1 -meu 0]'); 
  
    M3 = cross(rcU_4RR - rU_4LF, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR - rU_4LF, 
AU_3RR(1:3,1:3)*f3RR)+... 
         cross(rcU_4RF - rU_4LF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU_4LF, 
AU_3RR(1:3,1:3)*f3RR)+... 
         cross(rcU_2R  - rU_4LF, AU_2R(1:3,1:3)*f2R)   + cross(rcU_1R  - rU_4LF, 
AU_1R(1:3,1:3)*f1R)+... 
         cross(rcU_0R  - rU_4LF, AU_0R(1:3,1:3)*f0R)   + cross(rcU_1L  - rU_4LF, 
AU_1L(1:3,1:3)*f1L)+... 
         cross(rcU_2L  - rU_4LF, AU_2L(1:3,1:3)*f2L)   + cross(rcU_3LF - rU_4LF, 
AU_3LF(1:3,1:3)*f3LF)+... 
         cross(rcU_4LF - rU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU_4LF, 
AU_3LR(1:3,1:3)*f3LR)+... 
         cross(rcU_4LR - rU_4LF, AU_4LR(1:3,1:3)*f4LR) + ... 
         AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + AU_4RR(1:3,1:3)*tow4RR + 
AU_3RR(1:3,1:3)*tow3RR+ ... 
         AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + AU_4LR(1:3,1:3)*tow4LR + 
AU_3LR(1:3,1:3)*tow3LR+... 
         AU_2R(1:3,1:3)*tow2R   + AU_1R(1:3,1:3)*tow1R   + AU_2L(1:3,1:3)*tow2L   + 
AU_1L(1:3,1:3)*tow1L +... 
         AU_0R(1:3,1:3)*tow0R; 
         
    E1 = touchRF * cross(rU_4RF - rU_4LR, AU_SRF(1:3,1:3)*[1 -meu 0]'); 
    E2 = touchRR * cross(rU_4RR - rU_4LR, AU_SRR(1:3,1:3)*[1 -meu 0]'); 
    E3 = touchLF * cross(rU_4LF - rU_4LR, AU_SLF(1:3,1:3)*[1 -meu 0]'); 
 
    M4 = cross(rcU_4RR - rU_4LR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR - rU_4LR, 
AU_3RR(1:3,1:3)*f3RR)+... 
         cross(rcU_4RF - rU_4LR, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU_4LR, 
AU_3RR(1:3,1:3)*f3RR)+... 
         cross(rcU_2R  - rU_4LR, AU_2R(1:3,1:3)*f2R)   + cross(rcU_1R  - rU_4LR, 
AU_1R(1:3,1:3)*f1R)+... 
         cross(rcU_0R  - rU_4LR, AU_0R(1:3,1:3)*f0R)   + cross(rcU_1L  - rU_4LR, 
AU_1L(1:3,1:3)*f1L)+... 
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         cross(rcU_2L  - rU_4LR, AU_2L(1:3,1:3)*f2L)   + cross(rcU_3LF - rU_4LR, 
AU_3LF(1:3,1:3)*f3LF)+... 
         cross(rcU_4LF - rU_4LR, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU_4LR, 
AU_3LR(1:3,1:3)*f3LR)+... 
         cross(rcU_4LR - rU_4LR, AU_4LR(1:3,1:3)*f4LR) +... 
         AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + AU_4RR(1:3,1:3)*tow4RR + 
AU_3RR(1:3,1:3)*tow3RR+... 
         AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + AU_4LR(1:3,1:3)*tow4LR + 
AU_3LR(1:3,1:3)*tow3LR+... 
         AU_2R(1:3,1:3)*tow2R   + AU_1R(1:3,1:3)*tow1R   + AU_2L(1:3,1:3)*tow2L   + 
AU_1L(1:3,1:3)*tow1L +... 
         AU_0R(1:3,1:3)*tow0R; 
   
 
%______________________________________________________________ 
% Right Legs & Left Legs are in contact with ground 
% 
 
if (touchRF == 1 && touchRR == 1)&&(touchLF == 1 && touchLR == 1) 
 
    if (Roll ~= 0 && Pitch == 0)  
      
        Fn_SRF = -M3(2)/(D1(2)+D2(2)); 
        Fn_SRR = Fn_SRF; 
        Fn_SLF = -M1(2)/(B2(2)+B3(2)); 
        Fn_SLR = Fn_SLF; 
           xxx = Fn_SRF + Fn_SRR + Fn_SLF + Fn_SLR; 
         
    elseif (Roll == 0 && Pitch ~= 0) || (Roll == 0 && Pitch == 0) 
               
        Fn_SRF = -M2(3)/(C1(3)+C2(3)); 
        Fn_SRR = -M1(3)/(B1(3)+B3(3)); 
        Fn_SLF =  Fn_SRF; 
        Fn_SLR =  Fn_SRR; 
                         
        xxx = Fn_SRF + Fn_SRR + Fn_SLF + Fn_SLR; 
    end 
end 
 
%______________________________________________________________ 
% Right Legs in contact with ground & Left Legs without contact 
% 
if (touchRF == 1 && touchRR == 1) && (touchLF == 0 && touchLR == 0) 
 
        Coefficient = [ 0       B1(3);... 
                       C1(3)     0   ]; 
 
        b = [-M1(3) -M2(3)]'; 
 
        x = inv(Coefficient)*b; 
 
        Fn_SRF = x(1); 
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        Fn_SRR = x(2); 
        Fn_SLF = 0; 
        Fn_SLR = 0; 
end 
 
%______________________________________________________________ 
% Left Legs in contact with ground & Right Legs without contact 
% 
if (touchRF == 0 && touchRR == 0) && (touchLF == 1 && touchLR == 1) 
 
        Coefficient = [  0      D3(3);... 
                        E3(3)     0  ];    
 
        b = [-M3(3) -M4(3)]'; 
 
        x = inv(Coefficient)*b; 
 
        Fn_SRF = 0; 
        Fn_SRR = 0; 
        Fn_SLF = x(1); 
        Fn_SLR = x(2); 
end 
 
%______________________________________________________________ 
% Right Legs in contact with ground & Either Left Front or Rear Leg without contact 
% 
if (touchRF == 1 && touchRR == 1) &&... 
        ((touchLF == 1 && touchLR == 0)||(touchLF == 0 && touchLR == 1)) 
     
        Coefficient = [ 0       B1(2)   B2(2)   B3(2);... 
                        0       B1(3)   B2(3)   B3(3);... 
                       C1(3)     0      C2(3)   C3(3);... 
                       H1(1)    H2(1)   H3(1)   H4(1)]; 
 
        b = [-M1(2) -M1(3) -M2(3)  -System_Force_U(1)]'; 
         
        x = inv(Coefficient)*b; 
 
        Fn_SRF = x(1); 
        Fn_SRR = x(2); 
        Fn_SLF = x(3); 
        Fn_SLR = x(4); 
%______________________________________________________________ 
% Either Right Front or Rear Leg in contact with ground & Left Legs with contact 
%         
elseif ((touchRF == 0 && touchRR == 1)||(touchRF == 1 && touchRR == 0))... 
    && (touchLF == 1 && touchLR == 1) 
     
        Coefficient = [ D1(2)   D2(2)    0      D3(2);... 
                        D1(3)   D2(3)    0      D3(3);... 
                        E1(3)   E2(3)   E3(3)    0   ;... 
                        H1(1)   H2(1)   H3(1)   H4(1)]; 
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        b = [-M3(2) -M3(3) -M4(3)  -System_Force_U(1)]'; 
         
        x = inv(Coefficient)*b; 
              
        Fn_SRF = x(1); 
        Fn_SRR = x(2); 
        Fn_SLF = x(3); 
        Fn_SLR = x(4);    
     
    end 
 
%_______________________ 
% tolerance 
% 
if abs(Fn_SRF) < TOL  
   Fn_SRF = 0; 
end 
if abs(Fn_SRR) < TOL  
   Fn_SRR = 0; 
end 
if abs(Fn_SLF) < TOL  
   Fn_SLF = 0; 
end 
if abs(Fn_SLR) < TOL  
   Fn_SLR = 0; 
end 
%_______________________ 
% Constraints: poistive Normal forces 
% touching point 
if (Fn_SRR <= 0 && Fn_SLR <= 0) 
    touchRR = 0; 
    touchLR = 0; 
    Fn_SRF = -M3(2)/D1(2); 
    Fn_SLF = -M1(2)/B2(2); 
elseif (Fn_SRF <= 0 && Fn_SLF <= 0) 
    touchRF = 0; 
    touchLF = 0; 
    Fn_SRR = -M4(2)/E2(2); 
    Fn_SLR = -M2(2)/C3(2); 
elseif (Fn_SRF <= 0 && Fn_SRR <= 0) 
    touchRF = 0; 
    touchRR = 0;     
    Fn_SLF = -M4(3)/E3(3); 
    Fn_SLR = -M3(3)/D3(3); 
elseif (Fn_SLF <= 0 && Fn_SLR <= 0) 
    touchLF = 0; 
    touchLR = 0;     
    Fn_SRF = -M2(3)/C1(3); 
    Fn_SRR = -M1(3)/B1(3); 
end 
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if Fn_SRF <= 0 
   touchRF = 0; 
   Fn_SRF = 0; 
end  
if Fn_SRR <= 0 
   touchRR = 0; 
   Fn_SRR = 0; 
end  
if Fn_SLF <= 0 
   touchLF = 0; 
   Fn_SLF = 0; 
end           
if Fn_SLR <= 0 
   touchLR = 0; 
   Fn_SLR = 0; 
end         
 
FnSRF = Fn_SRF; 
FnSRR = Fn_SRR; 
FnSLF = Fn_SLF; 
FnSLR = Fn_SLR; 
 
xxx = FnSRF + FnSRR + FnSLF + FnSLR; 
%______________________________________ 
rU_CM = (rcU_0R*m0 + rcU_1R*m1 + rcU_2R*m2 + rcU_3RF*m3 + rcU_4RF*m4 + rcU_3RR*m3 + 
rcU_4RR*m4 ... 
                   + rcU_1L*m1 + rcU_2L*m2 + rcU_3LF*m3 + rcU_4LF*m4 + rcU_3LR*m3 + 
rcU_4LR*m4)/ ... 
                     (m0 + 2*(m1 + m2) + 4*(m3 + m4)); 
                  
rCM_4RF = rU_4RF - rU_CM; 
rCM_4RR = rU_4RR - rU_CM; 
rCM_4LF = rU_4LF - rU_CM; 
rCM_4LR = rU_4LR - rU_CM; 
 
 
r0R_4LF = inv(AU_0R(1:3, 1:3)) * rU_4RF; 
r0R_CM = inv(AU_0R(1:3, 1:3)) * rU_CM; 
rCM0_4LF = r0R_4LF - r0R_CM; 
alfa_LF = atan2(rCM0_4LF(1), rCM0_4LF(3))*180/pi + 90; 
 
alfa_yU_RF = atan2(rCM_4RF(1), rCM_4RF(3))*180/pi + 90; 
alfa_yU_RR = atan2(rCM_4RR(1), rCM_4RR(3))*180/pi + 90; 
alfa_yU_LF = atan2(rCM_4LF(1), rCM_4LF(3))*180/pi + 90; 
alfa_yU_LR = atan2(rCM_4LR(1), rCM_4LR(3))*180/pi + 90; 
 
alpha_yU_Front = alfa_yU_RF -alfa_yU_LF; 
alpha_yU_Rear  = alfa_yU_RR -alfa_yU_LR; 
 
alfa_zU_RF = atan2(rCM_4RF(1), rCM_4RF(2))*180/pi + 90; 
alfa_zU_RR = atan2(rCM_4RR(1), rCM_4RR(2))*180/pi + 90; 
alfa_zU_LF = atan2(rCM_4LF(1), rCM_4LF(2))*180/pi + 90; 
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alfa_zU_LR = atan2(rCM_4LR(1), rCM_4LR(2))*180/pi + 90; 
 
alpha_zU_Front = alfa_zU_RF -alfa_zU_LF; 
alpha_zU_Rear  = alfa_zU_RR -alfa_zU_LR; 
 
alfa_weight = atan2(System_Force_U(1), System_Force_U(3))*180/pi + 90; 
 
w_CM = [-43.56; 0 ;0]; 
M4RF = cross(rCM_4RF, w_CM); 
M4RR = cross(rCM_4RR, w_CM); 
M4LF = cross(rCM_4LF, w_CM); 
M4LR = cross(rCM_4LR, w_CM); 
 
MU_CM = cross(rU_CM , w_CM); 
MU_nSRF = cross(rU_4RF, [FnSRF; 0; 0]); 
MU_nSRR = cross(rU_4RR, [FnSRR; 0; 0]); 
MU_nSLF = cross(rU_4LF, [FnSLF; 0; 0]); 
MU_nSLR = cross(rU_4LR, [FnSLR; 0; 0]); 
 
%________________________________ 
% Center of Mass Position vector with respect to universal farme 
% 
    rU_CM = (rcU_0R*m0 + rcU_1R*m1 + rcU_2R*m2 + rcU_3RF*m3 + rcU_4RF*m4 + rcU_3RR*m3 + 
rcU_4RR*m4 ... 
           + rcU_1L*m1 + rcU_2L*m2 + rcU_3LF*m3 + rcU_4LF*m4 + rcU_3LR*m3 + rcU_4LR*m4)/ ... 
            (m0 + 2*(m1 + m2) + 4*(m3 + m4)); 
 
%________________________________________________________________________ 
% System Forces        
% 
FU = touchRF * AU_SRF(1:3,1:3)*[FnSRF -meu 0]' + ... 
     touchRR * AU_SRR(1:3,1:3)*[FnSRR -meu 0]' + ... 
     touchLF * AU_SLF(1:3,1:3)*[FnSLF -meu 0]' + ... 
     touchLR * AU_SLR(1:3,1:3)*[FnSLR -meu 0]' + ... 
     AU_4RF(1:3,1:3)*f4RR + AU_3RF(1:3,1:3)*f3RF + AU_4RR(1:3,1:3)*f4RR + 
AU_3RR(1:3,1:3)*f3RR + ... 
     AU_2R(1:3,1:3)*f2R + AU_1R(1:3,1:3)*f1R + AU_4LF(1:3,1:3)*f4LF + AU_3LF(1:3,1:3)*f3LF + ... 
     AU_4LR(1:3,1:3)*f4LR + AU_3LR(1:3,1:3)*f3LR + AU_2L(1:3,1:3)*f2L + AU_1L(1:3,1:3)*f1L + ... 
     AU_0R(1:3,1:3)*f0R; 
 
fc = AU_4RF(1:3,1:3)*f4RF + AU_3RF(1:3,1:3)*f3RF + ... 
     AU_4RR(1:3,1:3)*f4RR + AU_3RR(1:3,1:3)*f3RR + ... 
     AU_2R(1:3,1:3)*f2R + AU_1R(1:3,1:3)*f1R     + ... 
     AU_0R(1:3,1:3)*f0R + AU_1L(1:3,1:3)*f1L     + ... 
     AU_2L(1:3,1:3)*f2L + AU_3LF(1:3,1:3)*f3LF   + ... 
     AU_4LF(1:3,1:3)*f4LF + AU_3LR(1:3,1:3)*f3LR + ... 
     AU_4LR(1:3,1:3)*f4LR; 
  
f_gravity  = [-Mass*g; 0; 0]; 
 
f_inertial = fc - [-Mass*g; 0; 0]; 
%_____________________________________________________________________  
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% System Moments 
% 
MU   =   touchRF * cross(rU_4RF, AU_SRF(1:3,1:3)*[FnSRF -meu*FnSRF 0]') + ... 
         touchRR * cross(rU_4RR, AU_SRR(1:3,1:3)*[FnSRR -meu*FnSRR 0]') + ... 
         touchLF * cross(rU_4LF, AU_SLF(1:3,1:3)*[FnSLF -meu*FnSLF 0]') + ... 
         touchLR * cross(rU_4LR, AU_SLR(1:3,1:3)*[FnSLR -meu*FnSLR 0]') + ...    
         cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+... 
         cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+... 
         cross(rcU_2R, AU_2R(1:3,1:3)*f2R)    + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+... 
         cross(rcU_0R, AU_0R(1:3,1:3)*f0R)    + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+... 
         cross(rcU_2L, AU_2L(1:3,1:3)*f2L)    + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+... 
         cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+... 
         cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ... 
         AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + ... 
         AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR + ... 
         AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + ... 
         AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR + ... 
         AU_2R(1:3,1:3)*tow2R   + AU_1R(1:3,1:3)*tow1R   + ... 
         AU_2L(1:3,1:3)*tow2L   + AU_1L(1:3,1:3)*tow1L   + ... 
         AU_0R(1:3,1:3)*tow0R; 
      
towc = AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF +... 
       AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR +... 
       AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF +... 
       AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR +... 
       AU_2R(1:3,1:3)*tow2R   + AU_1R(1:3,1:3)*tow1R   +... 
       AU_2L(1:3,1:3)*tow2L   + AU_1L(1:3,1:3)*tow1L   +... 
       AU_0R(1:3,1:3)*tow0R; 
      
fc_Moment = cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+... 
            cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+... 
            cross(rcU_2R, AU_2R(1:3,1:3)*f2R)    + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+... 
            cross(rcU_0R, AU_0R(1:3,1:3)*f0R)    + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+... 
            cross(rcU_2L, AU_2L(1:3,1:3)*f2L)    + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+... 
            cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+... 
            cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR); 
         
f_gravity_Moment  = cross(rU_CM, f_gravity);      
 
f_inertial_Moment = cross(rU_CM, f_inertial); 
 
Normal_Forces_moments = touchRF * cross(rU_4RF, AU_SRF(1:3,1:3)*[FnSRF -meu 0]') + ... 
                        touchRR * cross(rU_4RR, AU_SRR(1:3,1:3)*[FnSRR -meu 0]') + ... 
                        touchLF * cross(rU_4LF, AU_SLF(1:3,1:3)*[FnSLF -meu 0]') + ... 
                        touchLR * cross(rU_4LR, AU_SLR(1:3,1:3)*[FnSLR -meu 0]'); 
 
%______________________________________________ 
% Masses on the four legs 
%  
    mSRF = FnSRF / (g * cos(Pitch)); 
    mSRR = FnSRR / (g * cos(Pitch)); 
    mSLF = FnSLF / (g * cos(Pitch)); 
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    mSLR = FnSLR / (g * cos(Pitch)); 
 
    mass = mSRF + mSRR + mSLF + mSLR; 
%____________________________________ 
 
FNSRF = -M2(3)/(touchRF*C1(3)); 
FNSRR = -M1(3)/(touchRR*B1(3)); 
 
if FNSRF <= 0   
   FNSRF = 0; 
end  
if FNSRR <= 0    
   FNSRR = 0; 
end     
 
tow_Critical_Right = touchRF * cross(rU_4RF, AU_SRF(1:3,1:3)*[FNSRF -meu*FNSRF 0]') + ... 
                     touchRR * cross(rU_4RR, AU_SRR(1:3,1:3)*[FNSRR -meu*FNSRR 0]') + ... 
                     cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+... 
                     cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+... 
                     cross(rcU_2R, AU_2R(1:3,1:3)*f2R)    + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+... 
                     cross(rcU_0R, AU_0R(1:3,1:3)*f0R)    + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+... 
                     cross(rcU_2L, AU_2L(1:3,1:3)*f2L)    + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+... 
                     cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+... 
                     cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ... 
                     AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + ... 
                     AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR + ... 
                     AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + ... 
                     AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR + ... 
                     AU_2R(1:3,1:3)*tow2R   + AU_1R(1:3,1:3)*tow1R   + ... 
                     AU_2L(1:3,1:3)*tow2L   + AU_1L(1:3,1:3)*tow1L   + ... 
                     AU_0R(1:3,1:3)*tow0R; 
 
FNSRF = -M3(2)/(touchRF*D1(2)); 
FNSLF = -M1(2)/(touchLF*B2(2)); 
 
if FNSRF <= 0   
   FNSRF = 0; 
end  
if FNSLF <= 0    
   FNSLF = 0; 
end      
 
tow_Critical_Front = touchRF * cross(rU_4RF, AU_SRF(1:3,1:3)*[FNSRF -meu*FNSRF 0]') + ... 
                     touchLF * cross(rU_4LF, AU_SLF(1:3,1:3)*[FNSLF -meu*FNSLF 0]') + ... 
                     cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+... 
                     cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+... 
                     cross(rcU_2R, AU_2R(1:3,1:3)*f2R)    + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+... 
                     cross(rcU_0R, AU_0R(1:3,1:3)*f0R)    + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+... 
                     cross(rcU_2L, AU_2L(1:3,1:3)*f2L)    + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+... 
                     cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+... 
                     cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ... 
                     AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + ... 
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                     AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR + ... 
                     AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + ... 
                     AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR + ... 
                     AU_2R(1:3,1:3)*tow2R   + AU_1R(1:3,1:3)*tow1R   + ... 
                     AU_2L(1:3,1:3)*tow2L   + AU_1L(1:3,1:3)*tow1L   + ... 
                     AU_0R(1:3,1:3)*tow0R; 
                  
%FNSRF 
%FNSLF 
 
FNSLF = -M4(3)/(touchLF*E3(3)); 
FNSLR = -M3(3)/(touchLR*D3(3)); 
 
if FNSLF <= 0    
   FNSLF = 0; 
end  
if FNSLR <= 0    
   FNSLR = 0; 
end      
 
tow_Critical_Left = touchLF * cross(rU_4LF, AU_SLF(1:3,1:3)*[FNSLF -meu*FNSLF 0]') + ... 
                    touchLR * cross(rU_4LR, AU_SLR(1:3,1:3)*[FNSLR -meu*FNSLR 0]') + ...   
                    cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+... 
                    cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+... 
                    cross(rcU_2R, AU_2R(1:3,1:3)*f2R)    + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+... 
                    cross(rcU_0R, AU_0R(1:3,1:3)*f0R)    + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+... 
                    cross(rcU_2L, AU_2L(1:3,1:3)*f2L)    + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+... 
                    cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+... 
                    cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ... 
                    AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + ... 
                    AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR + ... 
                    AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + ... 
                    AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR + ... 
                    AU_2R(1:3,1:3)*tow2R   + AU_1R(1:3,1:3)*tow1R   + ... 
                    AU_2L(1:3,1:3)*tow2L   + AU_1L(1:3,1:3)*tow1L   + ... 
                    AU_0R(1:3,1:3)*tow0R; 
 
FNSRR = -M4(2)/(touchRR*E2(2)); 
FNSLR = -M2(2)/(touchLR*C3(2));   
 
if FNSRR <= 0    
   FNSRR = 0; 
end  
if FNSLR <= 0    
   FNSLR = 0; 
end     
   
tow_Critical_Rear = touchRR * cross(rU_4RR, AU_SRR(1:3,1:3)*[FNSRR -meu*FNSRR 0]') + ... 
                    touchLR * cross(rU_4LR, AU_SLR(1:3,1:3)*[FNSLR -meu*FNSLR 0]') + ...   
                    cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+... 
                    cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+... 
                    cross(rcU_2R, AU_2R(1:3,1:3)*f2R)    + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+... 
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                    cross(rcU_0R, AU_0R(1:3,1:3)*f0R)    + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+... 
                    cross(rcU_2L, AU_2L(1:3,1:3)*f2L)    + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+... 
                    cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+... 
                    cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ... 
                    AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + ... 
                    AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR + ... 
                    AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + ... 
                    AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR + ... 
                    AU_2R(1:3,1:3)*tow2R   + AU_1R(1:3,1:3)*tow1R   + ... 
                    AU_2L(1:3,1:3)*tow2L   + AU_1L(1:3,1:3)*tow1L   + ... 
                    AU_0R(1:3,1:3)*tow0R; 
   %FNSRR 
   %FNSLR 
    %            pause 
 
 

DH.m 
 

% A Denavit Hartenberg Parameters describes the kinematics of a manipulator 
%   
% these DH Parameters are filled in matrix, each row represents one link of 
% the manipulator 
% our mobile robot have no prismatic joint. so, the variable joints are joints' angles  
% represented in theta. 
 
% All joints' angles are defined in radians. 
 
function dh= DH(q) 
 
theta    = q; 
 
%theta(4); % theta_4 does not effect on the manipulation. 
 
 
%     theta            d  a        alpha      sigma 
%____________________________________________________________________________________ 
 
dh=[     0              0                           0            0           0        
     
      theta(1) 0.2           0          -pi/2          0 
 
      theta(2)           0  0 pi/2           0 
 
      theta(3)           0  0.4 0          0 
   
      theta(4) 0               0.05 0          0 ]; 
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DHtransformation.m 
 

 
%T = [ cos(theta) -sin(theta)*cos(alpha)  sin(theta)*sin(alpha) a*cos(theta) 
%      sin(theta)  cos(theta)*cos(alpha) -cos(theta)*sin(alpha) a*sin(theta) 
%          0             sin(alpha)             cos(alpha)         d 
%          0                 0                      0              1        ]; 
 
 
function [T] = DHtransformation(theta, d, a, alpha) 
 
T = rotz(theta) * translation(0,0,d) * translation(a,0,0) * rotx(alpha); 
 

Dynamics.m 
 

 
function D = Dynamics(d, a) 
 
d1 = d(1); 
d2 =  0; 
a3 = a(3); 
a4 = a(4); 
 
a = 0.30; % half length of the platform in meter 
b = 0.02; % half sickness of the platform in meter 
%-------- Platform Mass, Volume and Density ------ 
     
    m0 = 4;     % kg 
    m1 = 1;     % kg 
    m2 = 0;     % kg 
    m3 = 1;     % kg 
     
%-------- wheel Mass, Volume and Density ------ 
    a4_ex = a4; 
    a4_in = 0.03; 
     
    %density = 79.577471; 
    density = 98.999999; 
    Volume4_ex = pi * a4_ex^2; 
    Volume4_in = pi * a4_in^2; 
     
    m4_ex = density * Volume4_ex;      % kg 
    m4_in = density * Volume4_in;      % kg 
   
    m4 = 0.5;       % kg,   m4 = m4_ex - m4_in = 0.4976; 
     
m = [m0, m1, m2, m3, m4]'; 
 
%---------------------- 
% Position vector of center of masses 
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rc_0 = [0             0            0  ]'; 
rc_1 = [0           0.5*d1         0  ]'; 
rc_2 = [0             0        -0.5*d2]'; 
rc_3 = [-0.5*a3       0            0  ]'; 
rc_4 = [-a4       0            0  ]'; 
 
rc = [rc_0, rc_1, rc_2, rc_3, rc_4]'; 
%------------------------------------------------- 
% Inertia matrices 
 
I0 = (m0/3)*[a^2+d1^2   0   0; 0    b^2+d1^2   0;0    0    a^2+b^2]; 
I1 = (m1*d1^2/12)*[1 0 0; 0 0 0; 0 0 1]; 
I2 = (m2*d2^2/12)*[1 0 0; 0 1 0; 0 0 0]; 
I3 = (m3*a3^2/12)*[0 0 0; 0 1 0; 0 0 1]; 
 
I4_ex = (m4_ex*a4_ex^2)*[1/4 0 0; 0 1/4 0; 0 0 1/2]; 
I4_in = (m4_in*a4_in^2)*[1/4 0 0; 0 1/4 0; 0 0 1/2]; 
I4 = I4_ex - I4_in; 
 
I = [  I0(1,1)   I0(2,2)     I0(3,3)     I0(1,2)     I0(2,3)     I0(1,3);... 
       I1(1,1)   I1(2,2)     I1(3,3)     I1(1,2)     I1(2,3)     I1(1,3);... 
       I2(1,1)   I2(2,2)     I2(3,3)     I2(1,2)     I2(2,3)     I2(1,3);... 
       I3(1,1)   I3(2,2)     I3(3,3)     I3(1,2)     I3(2,3)     I3(1,3);... 
       I4(1,1)   I4(2,2)     I4(3,3)     I4(1,2)     I4(2,3)     I4(1,3)]; 
 
%--------------------------------------------------- 
 
%   m rx ry rz Ixx Iyy Izz I  
D= [m, rc, I]; 

 
HT_2_RPY.m 

 
function [alpha_1,alpha_2,alpha_3] = HT_2_RPY(A_0_4) 
         
%------------- 
nx = A_0_4(1,1); 
ny = A_0_4(2,1); 
nz = A_0_4(3,1); 
 
ox = A_0_4(1,2); 
oy = A_0_4(2,2); 
oz = A_0_4(3,2); 
 
ax = A_0_4(1,3); 
ay = A_0_4(2,3); 
az = A_0_4(3,3); 
%------------- 
 
alpha_2 = atan2(-nz, nx); 
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alpha_3 = atan2(ny, (cos(alpha_2)*nx - sin(alpha_2)*nz)); 
alpha_1 = atan2((sin(alpha_2)*ox + cos(alpha_2)*oz), (sin(alpha_2)*ax + cos(alpha_2)*az)); 
%------------- 
 
 

 
Invkinematic.m 

 
function theta = invkinematic(T, s) 
 
TOL = 0.001;  
[nr, nc] = size(T); 
     
% test for accuracy 
for i=1:nr 
    for j=1:nc 
        if abs(T(i,j)) < TOL  
         T(i,j) = 0; 
        end 
    end 
end 
 
d1 = 0.2; 
a3 = 0.4; 
a4 = 0.05; 
 
    nx = T(1,1); 
 ny = T(2,1); 
 nz = T(3,1); 
 
 ox = T(1,2); 
 oy = T(2,2); 
 oz = T(3,2); 
 
 ax = T(1,3); 
 ay = T(2,3); 
 az = T(3,3); 
 
 px = T(1,4); 
 py = T(2,4); 
 pz = T(3,4); 
    
    theta_1 = atan2(ay,ax); 
     
    theta_2 = atan2( -(-pz+d1), -(cos(theta_1)*px + sin(theta_1)*py) ); 
     
    K1 =  cos(theta_1)*cos(theta_2)*px + sin(theta_1)*cos(theta_2)*py - sin(theta_2)*pz + sin(theta_2)*d1; 
    K2 = -sin(theta_1)*px + cos(theta_1)*py; 
     
    if (s == 'RF')  
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        theta_4 = acos((K1^2 + K2^2 - (a4^2+a3^2))/ (2*a3*a4)); 
     
    elseif (s == 'LF')  
        theta_4 = -acos((K1^2 + K2^2 - (a4^2+a3^2))/ (2*a3*a4)); 
         
    end 
 
    K3 = a4*cos(theta_4) + a3; 
    K4 = a4*sin(theta_4); 
    theta_3 = atan2((K1*K4 - K2*K3), -(K1*K3 + K2*K4)); 
    
    theta = [theta_1; theta_2; theta_3; theta_4]*180/pi; 
 

Kinematic.m 
 
function [A_0_4] = Kinematic(theta, d, a, alpha, B3, pitch) 
 
theta(4) = -theta(1) - theta(3) + B3 - pitch;  % theta_4 manipulated in contact point of wheel with ground  
theta(3) =  theta(3) + pi;  
 
for i=1:4 
  
  A = DHtransformation(theta(i), d(i), a(i), alpha(i)); 
 
       if (i==1) 
         A_0_1 = A; 
    elseif (i==2) 
         A_1_2 = A;   
    elseif (i==3) 
         A_2_3 = A; 
    elseif (i==4) 
         A_3_4 = A; 
    
     end; 
  
 end; 
 
A_0_4 = A_0_1 * A_1_2 * A_2_3 * A_3_4;   %Homogeneous Transformation from base to end-effector 
frame 
 

locomotion_DN.m 
 

% 
% increasing velocity linearly = vv*t(p), and constant acceleration = vv 
% 
 
function [A_4RF, A_4RR, A_4LF, A_4LR, V_4RF, V_4RR, V_4LF, V_4LR, d_4RF, d_4RR, d_4LF, 
d_4LR,... 
  Tdd_RF, Tdd_RR, Tdd_LF, Tdd_LR, Td_RF, Td_RR, Td_LF, Td_LR,... 
  T_RF, T_RR, T_LF, T_LR, tdelay_R, tdelay_L] = locomotion_DN(Touch, vv, t, a, q0) 
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np = numcols(t); 
    
At4RF = zeros(np,1);  At4RR = zeros(np,1);  At4LF = zeros(np,1);  At4LR = zeros(np,1);  
Vt4RF = zeros(np,1);  Vt4RR = zeros(np,1);  Vt4LF = zeros(np,1);  Vt4LR = zeros(np,1); 
D_4RF = zeros(1,np);  D_4RR = zeros(1,np);  D_4LF = zeros(1,np);  D_4LR = zeros(1,np);    
    
Thetadd_RF = zeros(np,1); Thetadd_RR = zeros(np,1); Thetadd_LF = zeros(np,1); Thetadd_LR = 
zeros(np,1); 
Thetad_RF = zeros(np,1); Thetad_RR = zeros(np,1); Thetad_LF = zeros(np,1); Thetad_LR = zeros(np,1); 
Theta_RF = zeros(np,1); Theta_RR = zeros(np,1); Theta_LF = zeros(np,1); Theta_LR = zeros(np,1); 
   
for p=1:np,   
     
    At4RF(p) =  Touch(1)*vv;  % m/(sec*sec) 
    At4RR(p) =  Touch(2)*vv;  % m/(sec*sec) 
    At4LF(p) = -Touch(3)*vv;  % m/(sec*sec) 
    At4LR(p) = -Touch(4)*vv;  % m/(sec*sec) 
        
    Vt4RF(p) =  Touch(1)*vv*t(p);  % m/sec 
    Vt4RR(p) =  Touch(2)*vv*t(p);  % m/sec 
    Vt4LF(p) = -Touch(3)*vv*t(p);  % m/sec 
    Vt4LR(p) = -Touch(4)*vv*t(p);  % m/sec 
        
    D_4RF(p) =  Touch(1)*vv*( 0.5*t(p)^2);  % m 
    D_4RR(p) =  Touch(2)*vv*( 0.5*t(p)^2);  % m 
    D_4LF(p) =  Touch(3)*vv*(-0.5*t(p)^2);  % m 
    D_4LR(p) =  Touch(4)*vv*(-0.5*t(p)^2);  % m 
     
    Thetadd_RF(p) = At4RF(p)/a(4);  % rad/(sec*sec) 
    Thetadd_RR(p) = At4RR(p)/a(4);  % rad/(sec*sec) 
    Thetadd_LF(p) = At4LF(p)/a(4);  % rad/(sec*sec) 
    Thetadd_LR(p) = At4LR(p)/a(4);  % rad/(sec*sec) 
        
    Thetad_RF(p)  = Vt4RF(p)/a(4);  % rad/sec 
    Thetad_RR(p)  = Vt4RR(p)/a(4);  % rad/sec 
    Thetad_LF(p)  = Vt4LF(p)/a(4);  % rad/sec 
    Thetad_LR(p)  = Vt4LR(p)/a(4);  % rad/sec 
        
    Theta_RF(p)   = D_4RF(p)/a(4);   % rad 
    Theta_RR(p)   = D_4RR(p)/a(4);   % rad    
    Theta_LF(p)   = D_4LF(p)/a(4);   % rad 
    Theta_LR(p)   = D_4LR(p)/a(4);   % rad 
end 
 
% _______________________________________________________________________ 
% time delay occured between the front and rear legs on both sides; right  
% and front sides 
% 
tdelay_R = sqrt((-a(3)*sin(q0(3,1)) + a(3)*sin(q0(3,2)))/(vv*0.5)); 
tdelay_L = sqrt(( a(3)*sin(q0(3,3)) - a(3)*sin(q0(3,4)))/(vv*0.5)); 
%_____________________________________________________________________ 
A_4RF = At4RF;  A_4RR = At4RR;  A_4LF = At4LF;  A_4LR = At4LR; 
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V_4RF = Vt4RF;  V_4RR = Vt4RR;  V_4LF = Vt4LF;  V_4LR = Vt4LR; 
 
d_4RF = D_4RF;  d_4RR = D_4RR; 
d_4LF = D_4LF;  d_4LR = D_4LR; 
 
Tdd_RF = Thetadd_RF;    Tdd_RR = Thetadd_RR; 
Tdd_LF = Thetadd_LF;    Tdd_LR = Thetadd_LR; 
 
Td_RF = Thetad_RF;  Td_RR = Thetad_RR; 
Td_LF = Thetad_LF;  Td_LR = Thetad_LR; 
 
T_RF = Theta_RF;    T_RR = Theta_RR; 
T_LF = Theta_LF;    T_LR = Theta_LR; 

 
Rotx.m 

% 
% homogeneous transformation for a rotation of t about the x-axis. 
% 
function r = rotx(t) 
 
r =    [1    0     0  0 
         0  cos(t) -sin(t)  0 
         0  sin(t)   cos(t) 0 
         0      0     0    1]; 

 
Roty.m 

% 
% homogeneous transformation for a rotation of t about the y-axis. 
% 
 
function r = roty(t) 
 
r = [cos(t)  0           sin(t) 0 
          0     1    0  0 
     -sin(t)               0  cos(t)    0 
         0                   0      0   1]; 

 
Rotz.m 

% 
% homogeneous transformation for a rotation of t about the z-axis. 
% 
 
function r = rotz(t) 
 
r =    [cos(t) -sin(t)  0  0 
          sin(t)  cos(t)  0 0 
             0                  0  1 0 
             0                  0     0           1]; 
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GG1.m 
 
%  
% Flat Surface 
% 
 
function [input_RF, input_RR, input_LF, input_LR, ... 
   beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,... 
   beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG15(t, tdelay_R, tdelay_L, a, q0), 
 
ns = numcols(t); 
tm = t(ns)/2; 
 
tp_R = tdelay_R;    %time delay b/w RF and RR  
tp_L = tdelay_L;    %time delay b/w LF and LR  
 
LEG_RF = zeros(1,ns); 
LEG_RR = zeros(1,ns); 
LEG_LR = zeros(1,ns); 
LEG_LF = zeros(1,ns); 
 
BETA_SRF_zs = zeros(1, ns); 
BETA_SRR_zs = zeros(1, ns); 
BETA_SLF_zs = zeros(1, ns); 
BETA_SLR_zs = zeros(1, ns); 
 
BETA_SRF_ys = zeros(1, ns); 
BETA_SRR_ys = zeros(1, ns); 
BETA_SLF_ys = zeros(1, ns); 
BETA_SLR_ys = zeros(1, ns); 
 
for p=1:ns 
 
        LEG_RF(p) = 3; 
        LEG_RR(p) = 3; 
        LEG_LF(p) = 3; 
        LEG_LR(p) = 3; 
end 
 
for p=1:ns 
    BETA_SRF_zs(p) = 0; 
    BETA_SRR_zs(p) = 0; 
    BETA_SLF_zs(p) = 0; 
    BETA_SLR_zs(p) = 0; 
     
    BETA_SRF_ys(p) = 0; 
    BETA_SRR_ys(p) = 0; 
    BETA_SLF_ys(p) = 0; 
    BETA_SLR_ys(p) = 0; 
end   
BETA_SRR_zs*180/pi; 
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input_RF = LEG_RF; 
input_RR = LEG_RR; 
input_LF = LEG_LF; 
input_LR = LEG_LR; 
 
beta_SRF_zs = BETA_SRF_zs; 
beta_SRR_zs = BETA_SRR_zs; 
beta_SLF_zs = BETA_SLF_zs; 
beta_SLR_zs = BETA_SLR_zs; 
 
beta_SRF_ys = BETA_SRF_ys; 
beta_SRR_ys = BETA_SRR_ys; 
beta_SLF_ys = BETA_SLF_ys; 
beta_SLR_ys = BETA_SLR_ys; 

 
GG2.m 

% 
% Step flat-inclined surface 
%   
 
function [input_RF, input_RR, input_LF, input_LR, ... 
   beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,... 
   beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG15(t, tdelay_R, tdelay_L, a, q0), 
 
ns = numcols(t); 
 
tp_R = tdelay_R;    %time delay b/w RF and RR  
tp_L = tdelay_L;    %time delay b/w LF and LR  
 
LEG_RF = zeros(1,ns); 
LEG_RR = zeros(1,ns); 
LEG_LR = zeros(1,ns); 
LEG_LF = zeros(1,ns); 
 
BETA_SRF_zs = zeros(1, ns); 
BETA_SRR_zs = zeros(1, ns); 
BETA_SLF_zs = zeros(1, ns); 
BETA_SLR_zs = zeros(1, ns); 
 
BETA_SRF_ys = zeros(1, ns); 
BETA_SRR_ys = zeros(1, ns); 
BETA_SLF_ys = zeros(1, ns); 
BETA_SLR_ys = zeros(1, ns); 
 
for p=1:ns 
        LEG_RF(p) = 3.2; 
        LEG_RR(p) = 3.2; 
        LEG_LF(p) = 3; 
        LEG_LR(p) = 3; 
end 
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for p=1:ns 
    BETA_SRF_zs(p) = 0; 
    BETA_SRR_zs(p) = 0; 
    BETA_SLF_zs(p) = 0; 
    BETA_SLR_zs(p) = 0; 
     
    BETA_SRF_ys(p) = 0; 
    BETA_SRR_ys(p) = 0; 
    BETA_SLF_ys(p) = pi/8; 
    BETA_SLR_ys(p) = pi/8; 
end   
 
%BETA_SRR_zs*180/pi; 
 
input_RF = LEG_RF; 
input_RR = LEG_RR; 
input_LF = LEG_LF; 
input_LR = LEG_LR; 
 
beta_SRF_zs = BETA_SRF_zs; 
beta_SRR_zs = BETA_SRR_zs; 
beta_SLF_zs = BETA_SLF_zs; 
beta_SLR_zs = BETA_SLR_zs; 
 
beta_SRF_ys = BETA_SRF_ys; 
beta_SRR_ys = BETA_SRR_ys; 
beta_SLF_ys = BETA_SLF_ys; 
beta_SLR_ys = BETA_SLR_ys; 

 
GG9.m 

 
% 
% Inclined surface 
%  
 
function [input_RF, input_RR, input_LF, input_LR, ... 
   beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,... 
   beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG9(t, tdelay_R, tdelay_L, a, q0), 
 
ns = numcols(t); 
 
tp_R = tdelay_R;    %time delay b/w RF and RR  
tp_L = tdelay_L;    %time delay b/w LF and LR  
 
LEG_RF = zeros(1,ns); 
LEG_RR = zeros(1,ns); 
LEG_LR = zeros(1,ns); 
LEG_LF = zeros(1,ns); 
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BETA_SRF_zs = zeros(1, ns); 
BETA_SRR_zs = zeros(1, ns); 
BETA_SLF_zs = zeros(1, ns); 
BETA_SLR_zs = zeros(1, ns); 
 
BETA_SRF_ys = zeros(1, ns); 
BETA_SRR_ys = zeros(1, ns); 
BETA_SLF_ys = zeros(1, ns); 
BETA_SLR_ys = zeros(1, ns); 
 
for p=1:ns 
 
        LEG_RF(p) = 3.2; 
        LEG_RR(p) = 3; 
        LEG_LF(p) = 3.2; 
        LEG_LR(p) = 3; 
end 
 
for p=1:ns 
    BETA_SRF_zs(p) = -20.70808185*pi/180; 
    BETA_SRR_zs(p) = -20.70808185*pi/180; 
    BETA_SLF_zs(p) = -20.70808185*pi/180; 
    BETA_SLR_zs(p) = -20.70808185*pi/180; 
     
    BETA_SRF_ys(p) = 0; 
    BETA_SRR_ys(p) = 0; 
    BETA_SLF_ys(p) = 0; 
    BETA_SLR_ys(p) = 0; 
end   
 
input_RF = LEG_RF; 
input_RR = LEG_RR; 
input_LF = LEG_LF; 
input_LR = LEG_LR; 
 
beta_SRF_zs = BETA_SRF_zs; 
beta_SRR_zs = BETA_SRR_zs; 
beta_SLF_zs = BETA_SLF_zs; 
beta_SLR_zs = BETA_SLR_zs; 
 
beta_SRF_ys = BETA_SRF_ys; 
beta_SRR_ys = BETA_SRR_ys; 
beta_SLF_ys = BETA_SLF_ys; 
beta_SLR_ys = BETA_SLR_ys; 

GG5.m 
 
 
% 
% flat surface, then inclined surface 
% 
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function [input_RF, input_RR, input_LF, input_LR, ... 
   beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,... 
   beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG5(t, tdelay_R, tdelay_L, a, q0), 
 
ns = numcols(t); 
tm = t(ns)/2; 
 
tp_R = tdelay_R;    %time delay b/w RF and RR  
tp_L = tdelay_L;    %time delay b/w LF and LR  
 
LEG_RF = zeros(1,ns); 
LEG_RR = zeros(1,ns); 
LEG_LR = zeros(1,ns); 
LEG_LF = zeros(1,ns); 
 
BETA_SRF_zs = zeros(1, ns); 
BETA_SRR_zs = zeros(1, ns); 
BETA_SLF_zs = zeros(1, ns); 
BETA_SLR_zs = zeros(1, ns); 
 
BETA_SRF_ys = zeros(1, ns); 
BETA_SRR_ys = zeros(1, ns); 
BETA_SLF_ys = zeros(1, ns); 
BETA_SLR_ys = zeros(1, ns); 
 
theta_R = zeros(1, ns); 
theta_R = zeros(1, ns); 
 
slope_R = zeros(1, ns); 
slope_L = zeros(1, ns); 
 
%____________________________________________________ 
% Slope 
% 
for p=1:ns 
    if t(p) <= tm 
        theta_R = 0; 
        theta_L = 0; 
         
    elseif t(p) > tm 
        theta_R =  pi/6; 
        theta_L =  pi/6; 
    end  
 
   slope_R = ((-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2)))*sin(theta_R))/tp_R; 
   slope_L = (( a(3)*sin(q0(3,3))-a(3)*sin(q0(3,4)))*sin(theta_L))/tp_L; 
end 
 
%________________________________________________________________ 
% Surface Function 
%  
for p=1:ns 
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    if t(p) <= tm 
        LEG_RF(p) = 3; 
        LEG_RR(p) = 3; 
        LEG_LF(p) = 3; 
        LEG_LR(p) = 3; 
         
    elseif (t(p) > tm) && (t(p) <= (tm + tp_R)) 
 
        LEG_RF(p) = 3 + slope_R*(t(p) - tm); 
        LEG_RR(p) = 3; 
        LEG_LF(p) = 3 + slope_L*(t(p) - tm); 
        LEG_LR(p) = 3; 
        
    elseif t(p) > (tm + tp_R) 
 
        LEG_RF(p) = 3 + slope_R*(t(p) - tm); 
        LEG_RR(p) = 3 + slope_R*(t(p) - tp_R - tm); 
        LEG_LF(p) = 3 + slope_L*(t(p) - tm); 
        LEG_LR(p) = 3 + slope_L*(t(p) - tp_L - tm); 
         
    end 
end 
 
for p=1:ns 
    if t(p) <= tm 
        BETA_SRF_zs(p) = 0; 
        BETA_SRR_zs(p) = 0; 
        BETA_SLF_zs(p) = 0; 
        BETA_SLR_zs(p) = 0; 
         
    elseif (t(p) > tm) && (t(p) <= (tm + tp_R)) 
        BETA_SRF_zs(p) =  -theta_R;  %-atan(slope_R); 
        BETA_SRR_zs(p) =   0;           %-atan(slope_R); 
        BETA_SLF_zs(p) =  -theta_L;  %-atan(slope_L); 
        BETA_SLR_zs(p) =   0;           %-atan(slope_L); 
         
    elseif t(p) > (tm + tp_R) 
        BETA_SRF_zs(p) =  -theta_R;  %-atan(slope_R); 
        BETA_SRR_zs(p) =  -theta_R;  %-atan(slope_R); 
        BETA_SLF_zs(p) =  -theta_L;  %-atan(slope_L); 
        BETA_SLR_zs(p) =  -theta_L;  %-atan(slope_L); 
    end   
     
    BETA_SRF_ys(p) = 0; 
    BETA_SRR_ys(p) = 0; 
    BETA_SLF_ys(p) = 0; 
    BETA_SLR_ys(p) = 0; 
end 
 
input_RF = LEG_RF; 
input_RR = LEG_RR; 
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input_LF = LEG_LF; 
input_LR = LEG_LR; 
 
beta_SRF_zs = BETA_SRF_zs; 
beta_SRR_zs = BETA_SRR_zs; 
beta_SLF_zs = BETA_SLF_zs; 
beta_SLR_zs = BETA_SLR_zs; 
 
beta_SRF_ys = BETA_SRF_ys; 
beta_SRR_ys = BETA_SRR_ys; 
beta_SLF_ys = BETA_SLF_ys; 
beta_SLR_ys = BETA_SLR_ys; 

GG7.m 
 

% 
% Sinusoidal Surface 
%  
 
function [input_RF, input_RR, input_LF, input_LR, ... 
   beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,... 
   beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG16(t, tdelay_R, tdelay_L, a, q0), 
 
ns = numcols(t); 
tm = t(ns)/2; 
 
tp_R = tdelay_R;   %time delay b/w RF and RR  
tp_L = tdelay_L;    %time delay b/w LF and LR  
 
LEG_RF = zeros(1,ns); 
LEG_RR = zeros(1,ns); 
LEG_LR = zeros(1,ns); 
LEG_LF = zeros(1,ns); 
 
BETA_SRF_zs = zeros(1, ns); 
BETA_SRR_zs = zeros(1, ns); 
BETA_SLF_zs = zeros(1, ns); 
BETA_SLR_zs = zeros(1, ns); 
 
BETA_SRF_ys = zeros(1, ns); 
BETA_SRR_ys = zeros(1, ns); 
BETA_SLF_ys = zeros(1, ns); 
BETA_SLR_ys = zeros(1, ns); 
 
n=20; 
Am =0.5; 
for p=1:ns 
        LEG_RF(p) = 3 + Am*sin((pi*(t(p) + tp_R/2))/(n*tp_R)); 
        LEG_RR(p) = 3 + Am*sin((pi*(t(p) - tp_R/2))/(n*tp_R)); 
        LEG_LF(p) = 3 + Am*sin((pi*(t(p) + tp_R/2))/(n*tp_L)); 
        LEG_LR(p) = 3 + Am*sin((pi*(t(p) - tp_L/2))/(n*tp_L)); 
end 
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theta = zeros(1,ns); 
 
for p=1:ns 
    theta(1,p) = asin((3 + Am*sin((pi*(t(p) - tp_R/2))/(n*tp_R))... 
        - 3 - Am*sin((pi*(t(p) + tp_R/2))/(n)))/(-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2)))); 
end 
 
for p=1:ns 
       
    BETA_SRF_zs(p) = asin((Am*sin((pi*t(p))/(n*tp_R)) -... 
        Am*sin((pi*(t(p) + tp_R))/(n*tp_R)))/(-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2)))); 
       
    BETA_SRR_zs(p) = asin((Am*sin((pi*(t(p) - tp_R))/(n*tp_R)) -... 
        Am*sin((pi*t(p))/(n*tp_R)))/(-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2)))); 
     
    BETA_SLF_zs(p) = asin((Am*sin((pi*t(p))/(n*tp_L)) -... 
        Am*sin((pi*(t(p) + tp_L))/(n*tp_L)))/(a(3)*sin(q0(3,3))-a(3)*sin(q0(3,4)))); 
     
    BETA_SLR_zs(p) = asin((Am*sin((pi*(t(p) - tp_L))/(n*tp_L)) -... 
        Am*sin((pi*t(p))/(n*tp_L)))/(a(3)*sin(q0(3,3))-a(3)*sin(q0(3,4)))); 
         
    BETA_SRF_ys(p) = 0; 
    BETA_SRR_ys(p) = 0; 
    BETA_SLF_ys(p) = 0; 
    BETA_SLR_ys(p) = 0; 
end   
 
input_RF = LEG_RF; 
input_RR = LEG_RR; 
input_LF = LEG_LF; 
input_LR = LEG_LR; 
 
beta_SRF_zs = BETA_SRF_zs; 
beta_SRR_zs = BETA_SRR_zs; 
beta_SLF_zs = BETA_SLF_zs; 
beta_SLR_zs = BETA_SLR_zs; 
 
beta_SRF_ys = BETA_SRF_ys; 
beta_SRR_ys = BETA_SRR_ys; 
beta_SLF_ys = BETA_SLF_ys; 
beta_SLR_ys = BETA_SLR_ys; 
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GG11.m 
 

% 
% Random surface 
%   
 
function [input_RF, input_RR, input_LF, input_LR, ... 
   beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,... 
   beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG11(t, tdelay_R, tdelay_L, a, q0,... 
                                                              d_4RF, d_4RR, d_4LF, d_4LR), 
 
ns = numcols(t); 
 
tp_R = round(tdelay_R)    %time delay b/w RF and RR  
tp_L = round(tdelay_L)    %time delay b/w LF and LR  
 
LEG_RF = zeros(1,ns); 
LEG_RR = zeros(1,ns); 
LEG_LR = zeros(1,ns); 
LEG_LF = zeros(1,ns); 
 
BETA_SRF_zs = zeros(1, ns); 
BETA_SRR_zs = zeros(1, ns); 
BETA_SLF_zs = zeros(1, ns); 
BETA_SLR_zs = zeros(1, ns); 
 
BETA_SRF_ys = zeros(1, ns); 
BETA_SRR_ys = zeros(1, ns); 
BETA_SLF_ys = zeros(1, ns); 
BETA_SLR_ys = zeros(1, ns); 
 
LEG_RF = [3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,... 
          3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,3.88,... 
          3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,4.75,... 
          4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,6.40,... 
          6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,9.80,... 
          10.0,10.4,10.8,11.2,11.6,12.00,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,16.2,... 
          16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,... 
          18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...          
18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,18.75,18.80,18.85,..          
18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.60,20.80,21.0,... 
          21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,... 
          24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];    
   
LEG_RR = [3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,... 
          3.20,3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,... 
          3.88,3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,... 
          4.75,4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,... 
          6.40,6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,... 
          9.80,10.0,10.4,10.8,11.2,11.6,12.0,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,... 
          16.2,16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,... 
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          18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,... 
          18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,...          
18.75,18.80,18.85,18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.
60,20.80,21.0,... 
          21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,... 
          24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];   
                 
LEG_LF = [3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,... 
          3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,3.88,... 
          3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,4.75,... 
          4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,6.40,... 
          6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,9.80,... 
          10.0,10.4,10.8,11.2,11.6,12.00,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,16.2,... 
          16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,... 
          18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...          
18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,18.75,18.80,18.85,..
.18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.60,20.80,21.0,... 
          21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,... 
          24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];  
   
LEG_LR = [3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,... 
          3.20,3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,... 
          3.88,3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,... 
          4.75,4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,... 
          6.40,6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,... 
          9.80,10.0,10.4,10.8,11.2,11.6,12.0,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,... 
          16.2,16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,... 
          18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,... 
          18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,...          
18.75,18.80,18.85,18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.
60,20.80,21.0,... 
          21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,... 
          24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];  
 
for p=1:ns-1 
 
    BETA_SRF_zs(p) = -asin((LEG_RF(p+1)-LEG_RF(p))/ (d_4RF(p+1)-d_4RF(p))); 
    BETA_SRR_zs(p) = -asin((LEG_RR(p+1)-LEG_RR(p))/ (d_4RR(p+1)-d_4RR(p))); 
    BETA_SLF_zs(p) = -asin((LEG_LF(p+1)-LEG_LF(p))/-(d_4LF(p+1)-d_4LF(p))); 
    BETA_SLR_zs(p) = -asin((LEG_LR(p+1)-LEG_LR(p))/-(d_4LR(p+1)-d_4LR(p))); 
     
    BETA_SRF_ys(p) = 0; 
    BETA_SRR_ys(p) = 0; 
    BETA_SLF_ys(p) = 0; 
    BETA_SLR_ys(p) = 0; 
    
end   
 
input_RF = LEG_RF; 
input_RR = LEG_RR; 
input_LF = LEG_LF; 
input_LR = LEG_LR; 
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beta_SRF_zs = BETA_SRF_zs; 
beta_SRR_zs = BETA_SRR_zs; 
beta_SLF_zs = BETA_SLF_zs; 
beta_SLR_zs = BETA_SLR_zs; 
 
beta_SRF_ys = BETA_SRF_ys; 
beta_SRR_ys = BETA_SRR_ys; 
beta_SLF_ys = BETA_SLF_ys; 
beta_SLR_ys = BETA_SLR_ys; 
 
 

Rover_1.m 
 
q= Conf_0; 
 
DH_RF = DH(q(:,1)); 
q_RF  = DH_RF(2:5,1); 
 
DH_RR = DH(q(:,2)); 
q_RR  = DH_RR(2:5,1); 
 
DH_LF = DH(q(:,3)); 
q_LF  = DH_LF(2:5,1); 
 
DH_LR = DH(q(:,4)); 
q_LR  = DH_LR(2:5,1); 
 
q0 = [q_RF, q_RR, q_LF, q_LR]; 
 
Dynamic_Parameters = Dynamics(DH_RF(2:5, 2), DH_RF(2:5, 3)); 
 
%    theta   d a sigma m rx ry rz Ixx Iyy Izz Ixy
 Iyz Ixz 
dh_dyn = [DH_RF, Dynamic_Parameters]; 
 
%--------------------------------------- 
q = Conf_1; 
 
DH_RF = DH(q(:,1)); 
q_RF  = DH_RF(2:5,1); 
 
DH_RR = DH(q(:,2)); 
q_RR  = DH_RR(2:5,1); 
 
DH_LF = DH(q(:,3)); 
q_LF  = DH_LF(2:5,1); 
 
DH_LR = DH(q(:,4)); 
q_LR  = DH_LR(2:5,1); 
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q1 = [q_RF, q_RR, q_LF, q_LR]; 
 
%--------------------------------------- 

 
Conf_0.m 

 
function Configuration = Conf_0() 
 
%---------- Right Side ------------------- 
theta_1R  = 0; 
theta_2R  = 0; 
 
theta_3RF = -pi/4; 
theta_3RR =  pi/4; 
 
theta_4R  = 0; 
 
%---------- Left Side -------------------- 
theta_1L  = 0; 
theta_2L  = 0; 
 
theta_3LF =  pi/4; 
theta_3LR = -pi/4; 
 
theta_4L  = 0; 
%------------------------------------------ 
 
%                   theta_1,       theta_2,        theta3,         theta_4 
Configuration_RF = [theta_1R      theta_2R        theta_3RF       theta_4R]'; 
Configuration_RR = [theta_1R      theta_2R        theta_3RR       theta_4R]'; 
Configuration_LF = [theta_1L      theta_2L        theta_3LF       theta_4L]'; 
Configuration_LR = [theta_1L      theta_2L        theta_3LR       theta_4L]'; 
 
%                     RF Leg              RR Leg,             LF Leg,             LR Leg 
Configuration = [Configuration_RF    Configuration_RR    Configuration_LF    Configuration_LR]; 
 
 


